Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2018_25_1_a9, author = {E. A. Marushkina}, title = {Periodic and quasiperiodic solutions in the system of three {Hutchinson} equations with a delayed broadcast connection}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {102--111}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a9/} }
TY - JOUR AU - E. A. Marushkina TI - Periodic and quasiperiodic solutions in the system of three Hutchinson equations with a delayed broadcast connection JO - Modelirovanie i analiz informacionnyh sistem PY - 2018 SP - 102 EP - 111 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a9/ LA - ru ID - MAIS_2018_25_1_a9 ER -
%0 Journal Article %A E. A. Marushkina %T Periodic and quasiperiodic solutions in the system of three Hutchinson equations with a delayed broadcast connection %J Modelirovanie i analiz informacionnyh sistem %D 2018 %P 102-111 %V 25 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a9/ %G ru %F MAIS_2018_25_1_a9
E. A. Marushkina. Periodic and quasiperiodic solutions in the system of three Hutchinson equations with a delayed broadcast connection. Modelirovanie i analiz informacionnyh sistem, Tome 25 (2018) no. 1, pp. 102-111. http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a9/
[1] Uri Alon, “Network motifs: theory and experimental approaches”, Nature Reviews Genetics, 8:6 (2007), 450–461 | DOI
[2] Milo R., Shen-Orr S., Itzkovitz S., et al., “Network motifs: Simple Building Blocks of Complex Networks”, Science, 298:5594 (2002), 824–827 | DOI
[3] Yechiam Yemini, The Topology of Biological Networks, Computer Science Department, Columbia University, 2004
[4] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Self-excited relaxation oscillations in networks of impulse neurons”, Russian Math. Surveys, 70:3 (2015), 383–452 | DOI | DOI | MR
[5] Glyzin S. D., Kiseleva E. O., “The account of delay in a connecting element between two oscillators”, Model. Anal. Inform. Syst., 17:2 (2010), 133–143 (in Russian)]
[6] Glyzin S. D., Soldatova E. A., “The factor of delay in a system of coupled oscillators FitzHugh–Nagumo”, Model. Anal. Inform. Syst., 17:3 (2010), 134–143 (in Russian)
[7] Hutchinson G. E., “Circular causal system in ecology”, Ann. N.-Y. Acad. Sci., 50 (1948), 221–246 | DOI
[8] Glyzin S. D., “Dynamical properties of the simplest finite-difference approximations of the “reaction-diffusion” boundary value problem”, Differential Equations, 33:6 (1997), 808–814 | MR
[9] Glyzin S. D., “Statsionarnyye rezhimy odnoy konechnoraznostnoy approksimatsii uravneniya Khatchinsona s diffuziyey”, Kachestvennyye i priblizhennyye metody issledovaniya operatornykh uravneniy, Yaroslavl, 1986, 112–127 (in Russian) | MR
[10] Glyzin S. D., “A registration of age groups for the Hutchinson's equation”, Model. Anal. Inform. Syst., 14:3 (2007), 29–42 (in Russian) | MR
[11] Gorchakova E. V., “Dynamics of weak interaction in a system of similar species”, Model. Anal. Inform. Syst., 18:1 (2011), 68–74 (in Russian)
[12] Tolbey A. O., “Local Dynamics of Three Coupled Oscillators with a Feedback Loop”, Model. Anal. Inform. Syst., 19:3 (2012), 105–112 (in Russian)
[13] Glyzin S. D., Kolesov A. Yu., Lokalnye metody analiza dinamicheskih sistem, Yaroslavl State University, Yaroslavl, 2006, 92 pp. (in Russian)