Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2018_25_1_a8, author = {A. N. Kulikov and D. A. Kulikov}, title = {The {Kuramoto--Sivashinsky} equation. {A} local attractor filled with unstable periodic solutions}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {92--101}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a8/} }
TY - JOUR AU - A. N. Kulikov AU - D. A. Kulikov TI - The Kuramoto--Sivashinsky equation. A local attractor filled with unstable periodic solutions JO - Modelirovanie i analiz informacionnyh sistem PY - 2018 SP - 92 EP - 101 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a8/ LA - ru ID - MAIS_2018_25_1_a8 ER -
%0 Journal Article %A A. N. Kulikov %A D. A. Kulikov %T The Kuramoto--Sivashinsky equation. A local attractor filled with unstable periodic solutions %J Modelirovanie i analiz informacionnyh sistem %D 2018 %P 92-101 %V 25 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a8/ %G ru %F MAIS_2018_25_1_a8
A. N. Kulikov; D. A. Kulikov. The Kuramoto--Sivashinsky equation. A local attractor filled with unstable periodic solutions. Modelirovanie i analiz informacionnyh sistem, Tome 25 (2018) no. 1, pp. 92-101. http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a8/
[1] Kuramoto Y., Chemical oscillations, waves and turbulence, Springer, Berlin, 1984 | MR
[2] Sivashinsky G. I., “Weak turbulence in periodic flows”, Physica D: Nonlinear Phenomena, 17:2 (1985), 243–255 | DOI | MR
[3] Akhmediev N., A. Ankevich, Dissipativnye solitony, Fizmatlit, M., 2008
[4] Armbruster D., Guckenheimer J., Holmes P., “Kuramoto–Sivashinsky Dynamics on the Center-Unstable Manifold”, SIAM J. Appl. Math., 49:3 (1989), 676–691 | DOI | MR
[5] Kevrekidis I.G., Nicolaenko B., Scovel J.C., “Back in the saddle again: A computer assisted study of the Kuramoto–Sivashinsky equation”, SIAM J. Appl. Math., 50:3 (1990), 760–790 | DOI | MR
[6] Nicolaenko B., Scheurer B., Temam R., “Some global dynamical properties of the Kuramoto–Sivashinsky equations: Nonlinear stability and attractors”, Physica D: Nonlinear Phenomena, 16:2 (1985), 155–183 | DOI | MR
[7] Changpin Li, Zhonghua Y., “Bifurcation of two-dimensional Kuramoto–Sivashinsky equation”, Appl. Math.- JCU, 13:3 (1998), 263–270 | DOI | MR
[8] Kulikov A. N, Kulikov D. A, “Formation of wavy nanostructures on the surface of flat substrates by ion bombardment”, Computational Mathematics and Mathematical Physics, 52:5 (2012), 800–814 | DOI | MR
[9] Kulikov A.N., Kulikov D.A., “Bifurcations of spatially inhomogeneous solutions in two boundary value problems for the generalized Kuramoto–Sivashinsky equation”, Vestnik MIFI, 3:4 (2014), 408–415 (in Russian) | DOI | MR
[10] Kulikov A.N., Kulikov D.A., “Inhomogeneous solutions for a modified Kuramoto–Sivashinsky equation”, Journal of Mathematical Sciences, 219:2 (2016), 173–183 | DOI | MR
[11] Kulikov A.N., “The attractors of two boundary value problems for a modifieded nonlinear telegraph equation”, Rus. J. Nonlin. Dyn., 4:1 (2008), 57–68 (in Russian) | MR
[12] Glyzin S.D., Kolesov A.Yu, “Primer attraktora, sostoyashchego iz neustoychivykh po Lyapunovu periodicheskikh traektoriy”, Modeling and Analysis of Information Systems, 15:2 (2008), 94–95 (in Russian)
[13] Kulikov A.N., Kulikov D.A., “The existence of attractor formed by the unstable solutions”, Abstracts of international conference reports “New Trends in Nonlinear Dynamics”, JarGU, Jaroslavl, 2017, 50–51 (in Russian)