The Kuramoto--Sivashinsky equation. A local attractor filled with unstable periodic solutions
Modelirovanie i analiz informacionnyh sistem, Tome 25 (2018) no. 1, pp. 92-101

Voir la notice de l'article provenant de la source Math-Net.Ru

A periodic boundary value problem is considered for one version of the Kuramoto–Sivashinsky equation, which is widely known in mathematical physics. Local bifurcations in a neighborhood of the spatially homogeneous equilibrium points in the case when they change stability are studied. It is shown that the loss of stability of homogeneous equilibrium points leads to the appearance of a two-dimensional attractor on which all solutions are periodic functions of time, except one spatially inhomogeneous state. A spectrum of frequencies of the given family of periodic solutions fills the entire number line, and they are all unstable in a sense of Lyapunov definition in the metric of the phase space (space of initial conditions) of the corresponding initial boundary value problem. It is chosen the Sobolev space as the phase space. For the periodic solutions which fill the two-dimensional attractor, the asymptotic formulas are given. In order to analyze the bifurcation problem it was used analysis methods for infinite-dimensional dynamical systems: the integral (invariant) manifold method, the Poincare normal form theory, and asymptotic methods. The analysis of bifurcations for periodic boundary value problem was reduced to analysing the structure of the neighborhood of the zero solution of the homogeneous Dirichlet boundary value problem for the considered equation.
Keywords: the Kuramoto-Sivashinsky equation, periodic boundary value problem, stability, attractor, asymptotic formulas.
Mots-clés : local bifurcations
@article{MAIS_2018_25_1_a8,
     author = {A. N. Kulikov and D. A. Kulikov},
     title = {The {Kuramoto--Sivashinsky} equation. {A} local attractor filled with unstable periodic solutions},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {92--101},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a8/}
}
TY  - JOUR
AU  - A. N. Kulikov
AU  - D. A. Kulikov
TI  - The Kuramoto--Sivashinsky equation. A local attractor filled with unstable periodic solutions
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2018
SP  - 92
EP  - 101
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a8/
LA  - ru
ID  - MAIS_2018_25_1_a8
ER  - 
%0 Journal Article
%A A. N. Kulikov
%A D. A. Kulikov
%T The Kuramoto--Sivashinsky equation. A local attractor filled with unstable periodic solutions
%J Modelirovanie i analiz informacionnyh sistem
%D 2018
%P 92-101
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a8/
%G ru
%F MAIS_2018_25_1_a8
A. N. Kulikov; D. A. Kulikov. The Kuramoto--Sivashinsky equation. A local attractor filled with unstable periodic solutions. Modelirovanie i analiz informacionnyh sistem, Tome 25 (2018) no. 1, pp. 92-101. http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a8/