Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2018_25_1_a7, author = {M. A. Davydova and S. A. Zakharova}, title = {On a singularly perturbed problem of the nonlinear thermal conductivity in the case of balanced nonlinearity}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {83--91}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a7/} }
TY - JOUR AU - M. A. Davydova AU - S. A. Zakharova TI - On a singularly perturbed problem of the nonlinear thermal conductivity in the case of balanced nonlinearity JO - Modelirovanie i analiz informacionnyh sistem PY - 2018 SP - 83 EP - 91 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a7/ LA - ru ID - MAIS_2018_25_1_a7 ER -
%0 Journal Article %A M. A. Davydova %A S. A. Zakharova %T On a singularly perturbed problem of the nonlinear thermal conductivity in the case of balanced nonlinearity %J Modelirovanie i analiz informacionnyh sistem %D 2018 %P 83-91 %V 25 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a7/ %G ru %F MAIS_2018_25_1_a7
M. A. Davydova; S. A. Zakharova. On a singularly perturbed problem of the nonlinear thermal conductivity in the case of balanced nonlinearity. Modelirovanie i analiz informacionnyh sistem, Tome 25 (2018) no. 1, pp. 83-91. http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a7/
[1] Galaktionov V.A., Kurdyumov S.P., Samarskii A.A., Processes in the open dissipative systems: Graphical study of the evolution of thermal structures, Znanye, M., 1988 (in Russian)
[2] Davydova M. A., Nefedov N. N., “Existence and Stability of Contrast Structures in Multidimensional Singularly Perturbed Reaction-Diffusion-Advection Problems”, Lecture Notes in Computer Science, 10187, 2017, 277–285 | DOI | MR
[3] Davydova M. A., Nefedov N. N., “Existence and Stability of the Solutions with Internal Layers in Multidimensional Problems of the Reaction-Diffusion-Advection Type with Balanced Nonlinearity”, Modeling and analysis of the information systems, 24:1 (2017), 31–38 (in Russian)
[4] Davydova M. A., “Existence and stability of solutions with boundary layers in multidimensional singularly perturbed reaction-diffusion-advection problems”, Math Notes, 98:6 (2015), 909–919 | DOI | MR
[5] Nefedov N. N., Sakamoto K., “Multi-dimensional stationary internal layers for spatially inhomogeneous reaction-diffusion equations with balanced nonlinearity”, Hiroshima Mathem. Journal, 33:3 (2003), 391–432 | MR
[6] Nefedov N. N., “The method of differential inequalities for nonlinear singularly perturbed problems with contrast structures of step type in the critical case”, Differ. Equ., 32:11 (1996), 1526–1534 | MR
[7] Vasil'eva A. B., Butuzov V. F., Nefedov N. N., “Singularly perturbed problems with boundary and internal layers”, Proceedings of the Steklov Institute of Mathematics, 268, SP MAIK Nauka/Interperiodica, 2010, 258–273 | DOI | MR | MR
[8] Lukyanenko D. V., Volkov V. T., Nefedov N. N., Recke L., Schneider K., “Analytic-Numerical Approach to Solving Singularly Perturbed Parabolic Equations with the Use of Dynamic Adapted Meshes”, Modeling and Analysis of Information Systems, 23:3 (2016), 334–341 | DOI | MR
[9] Volkov V. T., Nefedov N. N., “Asymptotic-numerical investigation of generation and motion of fronts in phase transition models”, Lecture Notes in Computer Science, 8236, 2013, 524–531 | DOI | MR