On a singularly perturbed problem of the nonlinear thermal conductivity in the case of balanced nonlinearity
Modelirovanie i analiz informacionnyh sistem, Tome 25 (2018) no. 1, pp. 83-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

On the basis of the modified asymptotic method of boundary functions and the asymptotic method of differential inequalities, the question of the existence of Lyapunov-stable stationary solutions with internal layers of the nonlinear heat equation in the case of nonlinear dependence of the power of thermal sources from temperature is investigated. The main conditions of the existence of such solutions are discussed. We construct an asymptotic approximation of an arbitrary-order accuracy to such solutions and suggest an efficient algorithm for constructing an asymptotic approximation to the localization surface of the transition layer. To justify the constructed formal asymptotics, we use an asymptotic method of differential inequalities. The main complexity is related to the description of the transition surface in whose neighborhood the internal layer is localized. We use a more efficient method for localizing the transition surface, which permits one to develop an approach to a more complicated case of balanced nonlinearity. The results can be used to create a numerical algorithm which uses the asymptotic analyses to construct space-non-uniform meshes while describing internal layer behaviour of the solution. As an illustration, we consider a problem on the plane that allows us to visualize the numerical calculations. Numerical and asymptotic solutions of zero order are compared for different values of the small parameter.
Keywords: nonlinear heat conductivity, contrast structures, asymptotic methods.
Mots-clés : reaction-diffusion-advection equations
@article{MAIS_2018_25_1_a7,
     author = {M. A. Davydova and S. A. Zakharova},
     title = {On a singularly perturbed problem of the nonlinear thermal conductivity in the case of balanced nonlinearity},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {83--91},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a7/}
}
TY  - JOUR
AU  - M. A. Davydova
AU  - S. A. Zakharova
TI  - On a singularly perturbed problem of the nonlinear thermal conductivity in the case of balanced nonlinearity
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2018
SP  - 83
EP  - 91
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a7/
LA  - ru
ID  - MAIS_2018_25_1_a7
ER  - 
%0 Journal Article
%A M. A. Davydova
%A S. A. Zakharova
%T On a singularly perturbed problem of the nonlinear thermal conductivity in the case of balanced nonlinearity
%J Modelirovanie i analiz informacionnyh sistem
%D 2018
%P 83-91
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a7/
%G ru
%F MAIS_2018_25_1_a7
M. A. Davydova; S. A. Zakharova. On a singularly perturbed problem of the nonlinear thermal conductivity in the case of balanced nonlinearity. Modelirovanie i analiz informacionnyh sistem, Tome 25 (2018) no. 1, pp. 83-91. http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a7/

[1] Galaktionov V.A., Kurdyumov S.P., Samarskii A.A., Processes in the open dissipative systems: Graphical study of the evolution of thermal structures, Znanye, M., 1988 (in Russian)

[2] Davydova M. A., Nefedov N. N., “Existence and Stability of Contrast Structures in Multidimensional Singularly Perturbed Reaction-Diffusion-Advection Problems”, Lecture Notes in Computer Science, 10187, 2017, 277–285 | DOI | MR

[3] Davydova M. A., Nefedov N. N., “Existence and Stability of the Solutions with Internal Layers in Multidimensional Problems of the Reaction-Diffusion-Advection Type with Balanced Nonlinearity”, Modeling and analysis of the information systems, 24:1 (2017), 31–38 (in Russian)

[4] Davydova M. A., “Existence and stability of solutions with boundary layers in multidimensional singularly perturbed reaction-diffusion-advection problems”, Math Notes, 98:6 (2015), 909–919 | DOI | MR

[5] Nefedov N. N., Sakamoto K., “Multi-dimensional stationary internal layers for spatially inhomogeneous reaction-diffusion equations with balanced nonlinearity”, Hiroshima Mathem. Journal, 33:3 (2003), 391–432 | MR

[6] Nefedov N. N., “The method of differential inequalities for nonlinear singularly perturbed problems with contrast structures of step type in the critical case”, Differ. Equ., 32:11 (1996), 1526–1534 | MR

[7] Vasil'eva A. B., Butuzov V. F., Nefedov N. N., “Singularly perturbed problems with boundary and internal layers”, Proceedings of the Steklov Institute of Mathematics, 268, SP MAIK Nauka/Interperiodica, 2010, 258–273 | DOI | MR | MR

[8] Lukyanenko D. V., Volkov V. T., Nefedov N. N., Recke L., Schneider K., “Analytic-Numerical Approach to Solving Singularly Perturbed Parabolic Equations with the Use of Dynamic Adapted Meshes”, Modeling and Analysis of Information Systems, 23:3 (2016), 334–341 | DOI | MR

[9] Volkov V. T., Nefedov N. N., “Asymptotic-numerical investigation of generation and motion of fronts in phase transition models”, Lecture Notes in Computer Science, 8236, 2013, 524–531 | DOI | MR