Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2018_25_1_a5, author = {V. E. Goryunov}, title = {The {Andronov--Hopf} bifurcation in a biophysical model of the {Belousov} reaction}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {63--70}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a5/} }
TY - JOUR AU - V. E. Goryunov TI - The Andronov--Hopf bifurcation in a biophysical model of the Belousov reaction JO - Modelirovanie i analiz informacionnyh sistem PY - 2018 SP - 63 EP - 70 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a5/ LA - ru ID - MAIS_2018_25_1_a5 ER -
V. E. Goryunov. The Andronov--Hopf bifurcation in a biophysical model of the Belousov reaction. Modelirovanie i analiz informacionnyh sistem, Tome 25 (2018) no. 1, pp. 63-70. http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a5/
[1] Belousov B. P., “Periodicheski deystvuyushchaya reaktsiya i ee mekhanizm”, Sbornik referatov po radiatsionnoy meditsine za 1958, 1959, 145–147, Medgiz (in Russian)
[2] Belousov B. P., “A periodic reaction and its mechanism”, Autowave Processes in Systems with Diffusion, Gorkiy, 1981, 176–186 (in Russian)
[3] Zhabotinskiy A. M., Kontsentratsionnye avtokolebaniya, Nauka, M., 1974, 180 pp. (in Russian)
[4] Kolesov Yu. S., Problema adekvatnosti ekologicheskikh uravneniy, Dep. VINITI 1901-85, 1985 (in Russian)
[5] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Relaxation oscillations and diffusion chaos in the Belousov reaction”, Comput. Math. Math. Phys., 51:8 (2011), 1307–1324 | DOI | MR
[6] Glyzin S. D., Kolesov A. Yu., Lokalnye metody analiza dinamicheskikh sistem, Yaroslavl State University, Yaroslavl, 2006, 92 pp. (in Russian)
[7] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Finite-dimensional models of diffusion chaos”, Comput. Math. Math. Phys., 50:5 (2010), 816–830 | DOI | MR
[8] Glyzin S.D., “Dimensional characteristics of diffusion chaos”, Automatic Control and Computer Sciences, 47:7 (2013), 452–469 | DOI
[9] Glyzin S. D., Shokin P. L., “Diffusion chaos in the reaction–diffusion boundary problem in the dumbbell domain”, Automatic Control and Computer Sciences, 50:7 (2016), 625–635 | DOI
[10] Glyzin S., Goryunov V., Kolesov A., “Spatially inhomogeneous modes of logistic differential equation with delay and small diffusion in a flat area”, Lobachevskii Journal of Mathematics, 38:5 (2017), 898–905 | DOI | MR
[11] Vasil'eva A. B., Kashchenko S. A., Kolesov Yu. S., Rozov N. Kh., “Bifurcation of self-oscillations of nonlinear parabolic equations with small diffusion”, Math. USSR-Sb., 58:2 (1987), 491–503 | DOI | MR