The Andronov--Hopf bifurcation in a biophysical model of the Belousov reaction
Modelirovanie i analiz informacionnyh sistem, Tome 25 (2018) no. 1, pp. 63-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of mathematical modeling of oxidation-reduction oscillatory chemical reactions based on the Belousov reaction mechanism. The process of the main components interaction in such a reaction can be interpreted by a “predator–prey” model phenomenologically similar to it. Thereby, we consider a parabolic boundary value problem consisting of three Volterratype equations, which is a mathematical model of this reaction. We carry out a local study of the neighborhood of the system non-trivial equilibrium state, define a critical parameter, at which the stability is lost in this neighborhood in an oscillatory manner. Using standard replacements, we construct the normal form of the considering system and the form of its coefficients defining the qualitative behaviour of the model and show the graphical representation of these coefficients depending on the main system parameters. On the basis of it, we prove a theorem on the existence of an orbitally asymptotically stable limit cycle, which bifurcates from the equilibrium state, and find its asymptotics. To identificate the limits of found asymptotics applicability, we compare the oscillation amplitudes of one periodic solution component obtained on the basis of asymptotic formulas and by numerical integration of the model system. Along with the main case of Andronov–Hopf bifurcation, we consider various combinations of normal form coefficients obtained by changing the parameters of the studied system, and the corresponding to them solutions behaviour near the equilibrium state. In the second part of the paper, we consider the problem of the diffusion loss of stability of a spatially homogeneous cycle obtained in the first part. We find a critical value of diffusion parameter, at which this cycle of distributed system loses the stability.
Mots-clés : Belousov reaction, diffusion, Andronov–Hopf bifurcation.
Keywords: parabolic system, normal form, asymptotics
@article{MAIS_2018_25_1_a5,
     author = {V. E. Goryunov},
     title = {The {Andronov--Hopf} bifurcation in a biophysical model of the {Belousov} reaction},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {63--70},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a5/}
}
TY  - JOUR
AU  - V. E. Goryunov
TI  - The Andronov--Hopf bifurcation in a biophysical model of the Belousov reaction
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2018
SP  - 63
EP  - 70
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a5/
LA  - ru
ID  - MAIS_2018_25_1_a5
ER  - 
%0 Journal Article
%A V. E. Goryunov
%T The Andronov--Hopf bifurcation in a biophysical model of the Belousov reaction
%J Modelirovanie i analiz informacionnyh sistem
%D 2018
%P 63-70
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a5/
%G ru
%F MAIS_2018_25_1_a5
V. E. Goryunov. The Andronov--Hopf bifurcation in a biophysical model of the Belousov reaction. Modelirovanie i analiz informacionnyh sistem, Tome 25 (2018) no. 1, pp. 63-70. http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a5/

[1] Belousov B. P., “Periodicheski deystvuyushchaya reaktsiya i ee mekhanizm”, Sbornik referatov po radiatsionnoy meditsine za 1958, 1959, 145–147, Medgiz (in Russian)

[2] Belousov B. P., “A periodic reaction and its mechanism”, Autowave Processes in Systems with Diffusion, Gorkiy, 1981, 176–186 (in Russian)

[3] Zhabotinskiy A. M., Kontsentratsionnye avtokolebaniya, Nauka, M., 1974, 180 pp. (in Russian)

[4] Kolesov Yu. S., Problema adekvatnosti ekologicheskikh uravneniy, Dep. VINITI 1901-85, 1985 (in Russian)

[5] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Relaxation oscillations and diffusion chaos in the Belousov reaction”, Comput. Math. Math. Phys., 51:8 (2011), 1307–1324 | DOI | MR

[6] Glyzin S. D., Kolesov A. Yu., Lokalnye metody analiza dinamicheskikh sistem, Yaroslavl State University, Yaroslavl, 2006, 92 pp. (in Russian)

[7] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Finite-dimensional models of diffusion chaos”, Comput. Math. Math. Phys., 50:5 (2010), 816–830 | DOI | MR

[8] Glyzin S.D., “Dimensional characteristics of diffusion chaos”, Automatic Control and Computer Sciences, 47:7 (2013), 452–469 | DOI

[9] Glyzin S. D., Shokin P. L., “Diffusion chaos in the reaction–diffusion boundary problem in the dumbbell domain”, Automatic Control and Computer Sciences, 50:7 (2016), 625–635 | DOI

[10] Glyzin S., Goryunov V., Kolesov A., “Spatially inhomogeneous modes of logistic differential equation with delay and small diffusion in a flat area”, Lobachevskii Journal of Mathematics, 38:5 (2017), 898–905 | DOI | MR

[11] Vasil'eva A. B., Kashchenko S. A., Kolesov Yu. S., Rozov N. Kh., “Bifurcation of self-oscillations of nonlinear parabolic equations with small diffusion”, Math. USSR-Sb., 58:2 (1987), 491–503 | DOI | MR