Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2018_25_1_a13, author = {M. V. Nevskii and A. Yu. Ukhalov}, title = {On minimal absorption index for an $n$-dimensional simplex}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {140--150}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a13/} }
TY - JOUR AU - M. V. Nevskii AU - A. Yu. Ukhalov TI - On minimal absorption index for an $n$-dimensional simplex JO - Modelirovanie i analiz informacionnyh sistem PY - 2018 SP - 140 EP - 150 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a13/ LA - ru ID - MAIS_2018_25_1_a13 ER -
M. V. Nevskii; A. Yu. Ukhalov. On minimal absorption index for an $n$-dimensional simplex. Modelirovanie i analiz informacionnyh sistem, Tome 25 (2018) no. 1, pp. 140-150. http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a13/
[1] Klimov V. S., Ukhalov A. Yu., Reshenie zadach matematicheskogo analiza s ispolzovaniem sistem kompyuternoi matematiki, P. G. Demidov Yaroslavl State University, Yaroslavl, 2014, 96 pp. (in Russian)
[2] Nevskij M. V., Khlestkova I. V., “K voprosu o minimalnoi lineinoi interpolyacii”, Sovremennye problemy matematiki i informatiki, 9, P. G. Demidov Yaroslavl State University, Yaroslavl, 2008, 31–37 (in Russian)
[3] Nevskij M. V., “On a certain relation for the minimal norm of an interpolational projection”, Modeling and Analysis of Information Systems, 16:1 (2009), 24–43 (in Russian)
[4] Nevskii M. V., “On a property of $n$-dimensional simplices”, Math. Notes, 87:4 (2010), 543–555 | DOI | DOI | MR
[5] Nevskii M. V., Geometricheskie ocenki v polinomialnoy interpolyacii, P. G. Demidov Yaroslavl State University, Yaroslavl, 2012 (in Russian)
[6] Nevskii M. V., Ukhalov A. Yu., “On numerical characteristics of a simplex and their estimates”, Modeling and Analysis of Information Systems, 23:5 (2016), 603–619 (in Russian) | MR
[7] Nevskii M. V., Ukhalov A. Yu., “New estimates of numerical values related to a simplex”, Modeling and Analysis of Information Systems, 24:1 (2017), 94–110 (in Russian) | MR
[8] Hall M. (Jr), Combinatorial theory, Blaisdall publishing company, Waltham (Massachusets)–Toronto–London, 1967 (in English) | MR | MR
[9] Hudelson M., Klee V., Larman D., “Largest $j$-simplices in $d$-cubes: some relatives of the Hadamard maximum determinant problem”, Linear Algebra Appl., 241–243 (1996), 519–598 | DOI | MR
[10] Lassak M., “Parallelotopes of maximum volume in a simplex”, Discrete Comput. Geom., 21:3 (1999), 449–462 | DOI | MR
[11] Mangano S., Mathematica cookbook, O'Reilly Media Inc., Cambridge, 2010
[12] Nevskii M., “Properties of axial diameters of a simplex”, Discrete Comput. Geom., 46:2 (2011), 301–312 | DOI | MR
[13] Scott P. R., “Lattices and convex sets in space”, Quart. J. Math. Oxford (2), 36 (1985), 359–362 | DOI | MR
[14] Scott P. R., “Properties of axial diameters”, Bull. Austral. Math. Soc., 39:3 (1989), 329–333 | DOI | MR