On minimal absorption index for an $n$-dimensional simplex
Modelirovanie i analiz informacionnyh sistem, Tome 25 (2018) no. 1, pp. 140-150
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $n\in{\mathbb N}$ and let $Q_n$ be the unit cube $[0,1]^n$.
For a nondegenerate simplex
$S\subset{\mathbb R}^n$, by
$\sigma S$ denote the homothetic copy of $S$
with center of homothety in the center of gravity of $S$
and ratio of homothety
$\sigma.$
Put
$\xi(S)=\min \{\sigma\geq 1: Q_n\subset \sigma S\}.$
We call $\xi(S)$ an absorption index of simplex $S$.
In the present paper, we give new estimates for the minimal absorption index
of the simplex contained in $Q_n$, i. e., for the number
$\xi_n=\min \{ \xi(S): \,
S\subset Q_n \}.$ In particular, this value and its analogues have
applications in estimates for the norms of interpolation projectors.
Previously the first author proved some general estimates of $\xi_n$.
Always $n\leq\xi_n n+1$. If there exists an Hadamard
matrix of order $n+1$, then $\xi_n=n$.
The best known general upper estimate
has the form $\xi_n\leq \frac{n^2-3}{n-1}$ $(n>2)$.
There exists a constant $c>0$ not depending on $n$ such that,
for any simplex $S\subset Q_n$ of maximum volume,
inequalities
$c\xi(S)\leq \xi_n\leq \xi(S)$ take place.
It motivates the use of maximum volume simplices
in upper estimates of $\xi_n$. The set of vertices of such
a simplex can be consructed with application of maximum $0/1$-determinant of order $n$
or maximum
$-1/1$-determinant of order $n+1$. In the paper, we compute
absorption indices of maximum volume simplices in $Q_n$ constructed from known
maximum
$-1/1$-determinants via a special procedure. For some $n$, this approach makes it
possible to lower theoretical upper bounds of
$\xi_n$. Also we give best known upper estimates of
$\xi_n$ for $n\leq 118$.
Keywords:
$n$-dimensional simplex, $n$-dimensional cube, homothety, numerical methods.
Mots-clés : absorption index, interpolation
Mots-clés : absorption index, interpolation
@article{MAIS_2018_25_1_a13,
author = {M. V. Nevskii and A. Yu. Ukhalov},
title = {On minimal absorption index for an $n$-dimensional simplex},
journal = {Modelirovanie i analiz informacionnyh sistem},
pages = {140--150},
publisher = {mathdoc},
volume = {25},
number = {1},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a13/}
}
TY - JOUR AU - M. V. Nevskii AU - A. Yu. Ukhalov TI - On minimal absorption index for an $n$-dimensional simplex JO - Modelirovanie i analiz informacionnyh sistem PY - 2018 SP - 140 EP - 150 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a13/ LA - ru ID - MAIS_2018_25_1_a13 ER -
M. V. Nevskii; A. Yu. Ukhalov. On minimal absorption index for an $n$-dimensional simplex. Modelirovanie i analiz informacionnyh sistem, Tome 25 (2018) no. 1, pp. 140-150. http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a13/