On minimal absorption index for an $n$-dimensional simplex
Modelirovanie i analiz informacionnyh sistem, Tome 25 (2018) no. 1, pp. 140-150

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $n\in{\mathbb N}$ and let $Q_n$ be the unit cube $[0,1]^n$. For a nondegenerate simplex $S\subset{\mathbb R}^n$, by $\sigma S$ denote the homothetic copy of $S$ with center of homothety in the center of gravity of $S$ and ratio of homothety $\sigma.$ Put $\xi(S)=\min \{\sigma\geq 1: Q_n\subset \sigma S\}.$ We call $\xi(S)$ an absorption index of simplex $S$. In the present paper, we give new estimates for the minimal absorption index of the simplex contained in $Q_n$, i. e., for the number $\xi_n=\min \{ \xi(S): \, S\subset Q_n \}.$ In particular, this value and its analogues have applications in estimates for the norms of interpolation projectors. Previously the first author proved some general estimates of $\xi_n$. Always $n\leq\xi_n n+1$. If there exists an Hadamard matrix of order $n+1$, then $\xi_n=n$. The best known general upper estimate has the form $\xi_n\leq \frac{n^2-3}{n-1}$ $(n>2)$. There exists a constant $c>0$ not depending on $n$ such that, for any simplex $S\subset Q_n$ of maximum volume, inequalities $c\xi(S)\leq \xi_n\leq \xi(S)$ take place. It motivates the use of maximum volume simplices in upper estimates of $\xi_n$. The set of vertices of such a simplex can be consructed with application of maximum $0/1$-determinant of order $n$ or maximum $-1/1$-determinant of order $n+1$. In the paper, we compute absorption indices of maximum volume simplices in $Q_n$ constructed from known maximum $-1/1$-determinants via a special procedure. For some $n$, this approach makes it possible to lower theoretical upper bounds of $\xi_n$. Also we give best known upper estimates of $\xi_n$ for $n\leq 118$.
Keywords: $n$-dimensional simplex, $n$-dimensional cube, homothety, numerical methods.
Mots-clés : absorption index, interpolation
@article{MAIS_2018_25_1_a13,
     author = {M. V. Nevskii and A. Yu. Ukhalov},
     title = {On minimal absorption index for an $n$-dimensional simplex},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {140--150},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a13/}
}
TY  - JOUR
AU  - M. V. Nevskii
AU  - A. Yu. Ukhalov
TI  - On minimal absorption index for an $n$-dimensional simplex
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2018
SP  - 140
EP  - 150
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a13/
LA  - ru
ID  - MAIS_2018_25_1_a13
ER  - 
%0 Journal Article
%A M. V. Nevskii
%A A. Yu. Ukhalov
%T On minimal absorption index for an $n$-dimensional simplex
%J Modelirovanie i analiz informacionnyh sistem
%D 2018
%P 140-150
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a13/
%G ru
%F MAIS_2018_25_1_a13
M. V. Nevskii; A. Yu. Ukhalov. On minimal absorption index for an $n$-dimensional simplex. Modelirovanie i analiz informacionnyh sistem, Tome 25 (2018) no. 1, pp. 140-150. http://geodesic.mathdoc.fr/item/MAIS_2018_25_1_a13/