Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2016_16_3_a4, author = {V. A. Klyachin}, title = {On the solvability of the discrete analogue of the {Minkowski--Alexandrov} problem}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {281--288}, publisher = {mathdoc}, volume = {16}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a4/} }
TY - JOUR AU - V. A. Klyachin TI - On the solvability of the discrete analogue of the Minkowski--Alexandrov problem JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2016 SP - 281 EP - 288 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a4/ LA - ru ID - ISU_2016_16_3_a4 ER -
%0 Journal Article %A V. A. Klyachin %T On the solvability of the discrete analogue of the Minkowski--Alexandrov problem %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2016 %P 281-288 %V 16 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a4/ %G ru %F ISU_2016_16_3_a4
V. A. Klyachin. On the solvability of the discrete analogue of the Minkowski--Alexandrov problem. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 3, pp. 281-288. http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a4/
[1] Pogorelov A. V., Multidimensional Minkowsky problem, Nauka, M., 1971, 95 pp. (in Russian)
[2] Iörgens K., “Über die Lösungen der Differentialgleichung $nt-s^2=1$”, Math. Ann., 127 (1954), 130–134 | DOI | MR
[3] Calabi E., “Improper affine hypersheres of convex type and a generalizations of theorem by K. Iörgens”, Michigan Math. J., 5:2 (1958), 105–126 | DOI | MR | Zbl
[4] Aleksandrov A. D., “Dirichlet problem for equation $Det||z_{ij}||=\varphi(z_1,...,z_n,z,x_1,...,x_n)$. I”, Vestnik LGU, Ser. Mathematics, mechanics and astronomy, 1958, no. 1(1), 5–24 (in Russian)
[5] Bodrenko A. I., The solution of the Minkowski problem for open surfaces in Riemannian space, 2007, arXiv: 0708.3929 [math.DG]
[6] Aleksandrov A. D., Convex polyhedra, GITTL, M.–L., 1950, 429 pp. (in Russian)
[7] Zil'berberg A. A., “On existence of closed convex polyhedra with prescrobed curvature of vertexes”, Uspehi Mat. Nauk, 17:4(106) (1962), 119–126 (in Russian) | MR | Zbl