Admissible hypercomplex structures on distributions of Sasakian manifolds
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 3, pp. 263-272

Voir la notice de l'article provenant de la source Math-Net.Ru

The notions of admissible (almost) hypercomplex structure and almost contact hyper-Kählerian structure are introduced. On a manifold $M$ with an almost contact metric structure $(M,\vec\xi,\eta,\varphi,D)$ an interior symmetric connection $\nabla$ is defined. In the case of a contact manifold of dimension bigger than or equal to five, it is proved that the curvature tensor of the connection $\nabla$ is zero if and only if there exist adapted coordinate charts with respect to that the coefficients of the interior connection are zero. On the distribution $D$ of an almost contact structure as on the total space of the vector bundle $(D,\pi,M)$, an admissible almost hypercomplex structure $(\tilde D,J,J_1,J_2,\vec u,\lambda=\eta\circ\pi_*,D)$ is defined. Under the condition that the admissible almost complex structure $\varphi$ is integrable, it is proved that the constructed almost hypercomplex structure is integrable if and only if the distribution $D$ is a distribution of zero curvature. In the case of a Sasakian structure $(M,\vec\xi,\eta,\varphi,g,D)$, the conditions that imply that the admissible hypercomplex structure $(\tilde D,J,J_1,J_2,\vec u,\lambda=\eta\circ\pi_*,\tilde g,D)$ is an almost contact hyper-Kählerian structure.
@article{ISU_2016_16_3_a2,
     author = {S. V. Galaev},
     title = {Admissible hypercomplex structures on distributions of {Sasakian} manifolds},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {263--272},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a2/}
}
TY  - JOUR
AU  - S. V. Galaev
TI  - Admissible hypercomplex structures on distributions of Sasakian manifolds
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2016
SP  - 263
EP  - 272
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a2/
LA  - ru
ID  - ISU_2016_16_3_a2
ER  - 
%0 Journal Article
%A S. V. Galaev
%T Admissible hypercomplex structures on distributions of Sasakian manifolds
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2016
%P 263-272
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a2/
%G ru
%F ISU_2016_16_3_a2
S. V. Galaev. Admissible hypercomplex structures on distributions of Sasakian manifolds. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 3, pp. 263-272. http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a2/