Admissible hypercomplex structures on distributions of Sasakian manifolds
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 3, pp. 263-272.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notions of admissible (almost) hypercomplex structure and almost contact hyper-Kählerian structure are introduced. On a manifold $M$ with an almost contact metric structure $(M,\vec\xi,\eta,\varphi,D)$ an interior symmetric connection $\nabla$ is defined. In the case of a contact manifold of dimension bigger than or equal to five, it is proved that the curvature tensor of the connection $\nabla$ is zero if and only if there exist adapted coordinate charts with respect to that the coefficients of the interior connection are zero. On the distribution $D$ of an almost contact structure as on the total space of the vector bundle $(D,\pi,M)$, an admissible almost hypercomplex structure $(\tilde D,J,J_1,J_2,\vec u,\lambda=\eta\circ\pi_*,D)$ is defined. Under the condition that the admissible almost complex structure $\varphi$ is integrable, it is proved that the constructed almost hypercomplex structure is integrable if and only if the distribution $D$ is a distribution of zero curvature. In the case of a Sasakian structure $(M,\vec\xi,\eta,\varphi,g,D)$, the conditions that imply that the admissible hypercomplex structure $(\tilde D,J,J_1,J_2,\vec u,\lambda=\eta\circ\pi_*,\tilde g,D)$ is an almost contact hyper-Kählerian structure.
@article{ISU_2016_16_3_a2,
     author = {S. V. Galaev},
     title = {Admissible hypercomplex structures on distributions of {Sasakian} manifolds},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {263--272},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a2/}
}
TY  - JOUR
AU  - S. V. Galaev
TI  - Admissible hypercomplex structures on distributions of Sasakian manifolds
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2016
SP  - 263
EP  - 272
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a2/
LA  - ru
ID  - ISU_2016_16_3_a2
ER  - 
%0 Journal Article
%A S. V. Galaev
%T Admissible hypercomplex structures on distributions of Sasakian manifolds
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2016
%P 263-272
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a2/
%G ru
%F ISU_2016_16_3_a2
S. V. Galaev. Admissible hypercomplex structures on distributions of Sasakian manifolds. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 3, pp. 263-272. http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a2/

[1] Sasaki S., “On the differential geometry of tangent bundles of Riemannian manifolds”, Tohoku Math. J., 10 (1958), 338–354 | DOI | MR | Zbl

[2] Dombrowski P., “On the geometry of the tangent bundle”, J. Reine Angew. Math., 210 (1962), 73–88 | MR | Zbl

[3] Munteanu M. I., “Some aspects on the geometry of the tangent bundles and tangent sphere bundles of a Riemannian manifold”, Mediterr. J. Math., 5 (2008), 43–59 | DOI | MR | Zbl

[4] Kowalski O., “Curvature of the induced Riemannian metric on the tangent bundle of a Riemannian manifold”, J. Reine Angew. Math., 250 (1971), 124–129 | MR | Zbl

[5] Musso E., Tricerri F., “Riemannian metrics on tangent bundles”, Ann. Mat. Pura Appl., 150:4 (1988), 1–19 | DOI | MR | Zbl

[6] Galaev S. V., “The intrinsic geometry of almost contact metric manifolds”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 12:1 (2012), 16–22 (in Russian)

[7] Galaev S. V., “Almost contact Kählerian manifolds of constant holomorphic sectional curvature”, Russian Math., 2014, no. 8, 42–52 | MR

[8] Galaev S. V., “Almost contact metric spaces with $N$-connection”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 15:3 (2015), 258–264 | DOI | Zbl

[9] Galaev S. V., “Almost contact metric structures defined by an $N$-prolonged connection”, Yakutian Math. J., 2015, no. 1, 25–34 (in Russian) | MR

[10] Obata M., “Affine connections on manifolds with almost complex, quaternion or Hermitian structure”, Jap. J. Math., 26 (1956), 43–77 | MR

[11] Obata M., “Affine connections in a quaternion manifold and transformations preserving the structure”, J. Math. Soc. Japan, 9 (1957), 406–416 | DOI | MR | Zbl

[12] Bogdanovich S. A., Ermolitski A. A., “On almost hyper-Hermitian structures on Riemannian manifolds and tangent bundles”, Cent. Eur. J. Math., 2:5 (2004), 615–623 | DOI | MR | Zbl

[13] Oproiu V., “Hyper-Kähler structures on the tangent bundle of a Kähler manifold”, Balkan J. Geom. Appl., 15:1 (2010), 104–119 | MR | Zbl

[14] Vagner V. V., “The geometry of an $(n-1)$-dimensional nonholonomic manifold in an $n$-dimensional space”, Trudy Sem. Vektor. Tenzor. Analiza, 5, Moscow Univ. Press, M., 1941, 173–255 (in Russian)

[15] Bejancu A., “Kahler contact distributions”, J. Geometry and Physics, 60 (2010), 1958–1967 | DOI | MR | Zbl

[16] Schouten J., van Kampen E., “Zur Einbettungs-und Krümmungstheorie nichtholonomer Gebilde”, Math. Ann., 103 (1930), 752–783 | DOI | MR | Zbl

[17] Bukusheva A. V., “The geometry of the contact metric spaces $\varphi$-connection”, Belgorod State University Scientific Bulletin. Mathematics Physics, 17(214):40 (2015), 20–24 (in Russian) | Zbl