Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2016_16_3_a2, author = {S. V. Galaev}, title = {Admissible hypercomplex structures on distributions of {Sasakian} manifolds}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {263--272}, publisher = {mathdoc}, volume = {16}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a2/} }
TY - JOUR AU - S. V. Galaev TI - Admissible hypercomplex structures on distributions of Sasakian manifolds JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2016 SP - 263 EP - 272 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a2/ LA - ru ID - ISU_2016_16_3_a2 ER -
%0 Journal Article %A S. V. Galaev %T Admissible hypercomplex structures on distributions of Sasakian manifolds %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2016 %P 263-272 %V 16 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a2/ %G ru %F ISU_2016_16_3_a2
S. V. Galaev. Admissible hypercomplex structures on distributions of Sasakian manifolds. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 3, pp. 263-272. http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a2/
[1] Sasaki S., “On the differential geometry of tangent bundles of Riemannian manifolds”, Tohoku Math. J., 10 (1958), 338–354 | DOI | MR | Zbl
[2] Dombrowski P., “On the geometry of the tangent bundle”, J. Reine Angew. Math., 210 (1962), 73–88 | MR | Zbl
[3] Munteanu M. I., “Some aspects on the geometry of the tangent bundles and tangent sphere bundles of a Riemannian manifold”, Mediterr. J. Math., 5 (2008), 43–59 | DOI | MR | Zbl
[4] Kowalski O., “Curvature of the induced Riemannian metric on the tangent bundle of a Riemannian manifold”, J. Reine Angew. Math., 250 (1971), 124–129 | MR | Zbl
[5] Musso E., Tricerri F., “Riemannian metrics on tangent bundles”, Ann. Mat. Pura Appl., 150:4 (1988), 1–19 | DOI | MR | Zbl
[6] Galaev S. V., “The intrinsic geometry of almost contact metric manifolds”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 12:1 (2012), 16–22 (in Russian)
[7] Galaev S. V., “Almost contact Kählerian manifolds of constant holomorphic sectional curvature”, Russian Math., 2014, no. 8, 42–52 | MR
[8] Galaev S. V., “Almost contact metric spaces with $N$-connection”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 15:3 (2015), 258–264 | DOI | Zbl
[9] Galaev S. V., “Almost contact metric structures defined by an $N$-prolonged connection”, Yakutian Math. J., 2015, no. 1, 25–34 (in Russian) | MR
[10] Obata M., “Affine connections on manifolds with almost complex, quaternion or Hermitian structure”, Jap. J. Math., 26 (1956), 43–77 | MR
[11] Obata M., “Affine connections in a quaternion manifold and transformations preserving the structure”, J. Math. Soc. Japan, 9 (1957), 406–416 | DOI | MR | Zbl
[12] Bogdanovich S. A., Ermolitski A. A., “On almost hyper-Hermitian structures on Riemannian manifolds and tangent bundles”, Cent. Eur. J. Math., 2:5 (2004), 615–623 | DOI | MR | Zbl
[13] Oproiu V., “Hyper-Kähler structures on the tangent bundle of a Kähler manifold”, Balkan J. Geom. Appl., 15:1 (2010), 104–119 | MR | Zbl
[14] Vagner V. V., “The geometry of an $(n-1)$-dimensional nonholonomic manifold in an $n$-dimensional space”, Trudy Sem. Vektor. Tenzor. Analiza, 5, Moscow Univ. Press, M., 1941, 173–255 (in Russian)
[15] Bejancu A., “Kahler contact distributions”, J. Geometry and Physics, 60 (2010), 1958–1967 | DOI | MR | Zbl
[16] Schouten J., van Kampen E., “Zur Einbettungs-und Krümmungstheorie nichtholonomer Gebilde”, Math. Ann., 103 (1930), 752–783 | DOI | MR | Zbl
[17] Bukusheva A. V., “The geometry of the contact metric spaces $\varphi$-connection”, Belgorod State University Scientific Bulletin. Mathematics Physics, 17(214):40 (2015), 20–24 (in Russian) | Zbl