About the Fundamental Characteristics of the Lagrange Interpolation Polynomials Family
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 1, pp. 99-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the Lagrange interpolation polynomials family, determined in the even number of nodes, it is obtained various explicit (unmodulus) forms of the Lebesque functions. They are divided into uncrossing classes, which are consecutively studied using the elements of differential calculus then. The interdependence is established between the functions, as so as between the Lebesque constants from these classes.
@article{ISU_2013_13_1_a24,
     author = {I. A. Shakirov},
     title = {About the {Fundamental} {Characteristics} of the {Lagrange} {Interpolation} {Polynomials} {Family}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {99--104},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a24/}
}
TY  - JOUR
AU  - I. A. Shakirov
TI  - About the Fundamental Characteristics of the Lagrange Interpolation Polynomials Family
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2013
SP  - 99
EP  - 104
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a24/
LA  - ru
ID  - ISU_2013_13_1_a24
ER  - 
%0 Journal Article
%A I. A. Shakirov
%T About the Fundamental Characteristics of the Lagrange Interpolation Polynomials Family
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2013
%P 99-104
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a24/
%G ru
%F ISU_2013_13_1_a24
I. A. Shakirov. About the Fundamental Characteristics of the Lagrange Interpolation Polynomials Family. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 1, pp. 99-104. http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a24/

[1] Zygmund A., Trigonometric series, v. 2, Cambridge Univ. Press, Cambridge, 1968 | MR

[2] Shakirov I. A., “The Lagrange trigonometric interpolation polynomial with the minimal norm considered as an operator from $C_{2\pi}$ to $C_{2\pi}$”, Russian Math. (Izv. VUZ. Matematika), 54:10 (2010), 52–59 | DOI | MR | Zbl

[3] Natanson I. P., Constructive function theory, v. 1–3, F. Ungar Publishing Co., New York, 1964–1965 | Zbl

[4] Korneichuk N. P., Exact Constants in Approximation Theory, Nauka, Moscow, 1987 | MR

[5] Dzyadyk V. K., Approximation methods for solving differential and integral equations, Naukova Dumka, Kiev, 1988 | MR

[6] Stechkin S. B., Subbotin Yu. N., Splines in Computational Mathematics, Nauka, Moscow, 1976 | MR | Zbl

[7] Babenko K. I., Fundamentals of Numerical Analysis, NIC Regular and chaotic dynamics, Moscow–Izhevsk, 2002

[8] Shakirov I. A., “A complete description of the Lebesgue functions for classical lagrange interpolation polynomials”, Russian Math. (Izv. VUZ. Matematika), 55:10 (2011), 70–77 | DOI | MR | Zbl