Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2013_13_1_a24, author = {I. A. Shakirov}, title = {About the {Fundamental} {Characteristics} of the {Lagrange} {Interpolation} {Polynomials} {Family}}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {99--104}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a24/} }
TY - JOUR AU - I. A. Shakirov TI - About the Fundamental Characteristics of the Lagrange Interpolation Polynomials Family JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2013 SP - 99 EP - 104 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a24/ LA - ru ID - ISU_2013_13_1_a24 ER -
%0 Journal Article %A I. A. Shakirov %T About the Fundamental Characteristics of the Lagrange Interpolation Polynomials Family %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2013 %P 99-104 %V 13 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a24/ %G ru %F ISU_2013_13_1_a24
I. A. Shakirov. About the Fundamental Characteristics of the Lagrange Interpolation Polynomials Family. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 13 (2013) no. 1, pp. 99-104. http://geodesic.mathdoc.fr/item/ISU_2013_13_1_a24/
[1] Zygmund A., Trigonometric series, v. 2, Cambridge Univ. Press, Cambridge, 1968 | MR
[2] Shakirov I. A., “The Lagrange trigonometric interpolation polynomial with the minimal norm considered as an operator from $C_{2\pi}$ to $C_{2\pi}$”, Russian Math. (Izv. VUZ. Matematika), 54:10 (2010), 52–59 | DOI | MR | Zbl
[3] Natanson I. P., Constructive function theory, v. 1–3, F. Ungar Publishing Co., New York, 1964–1965 | Zbl
[4] Korneichuk N. P., Exact Constants in Approximation Theory, Nauka, Moscow, 1987 | MR
[5] Dzyadyk V. K., Approximation methods for solving differential and integral equations, Naukova Dumka, Kiev, 1988 | MR
[6] Stechkin S. B., Subbotin Yu. N., Splines in Computational Mathematics, Nauka, Moscow, 1976 | MR | Zbl
[7] Babenko K. I., Fundamentals of Numerical Analysis, NIC Regular and chaotic dynamics, Moscow–Izhevsk, 2002
[8] Shakirov I. A., “A complete description of the Lebesgue functions for classical lagrange interpolation polynomials”, Russian Math. (Izv. VUZ. Matematika), 55:10 (2011), 70–77 | DOI | MR | Zbl