Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2024_88_4_a1, author = {Fusheng Deng and Jiafu Ning and Zhiwei Wang and Xiangyu Zhou}, title = {Linear isometric invariants of bounded domains}, journal = {Izvestiya. Mathematics }, pages = {626--638}, publisher = {mathdoc}, volume = {88}, number = {4}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_4_a1/} }
TY - JOUR AU - Fusheng Deng AU - Jiafu Ning AU - Zhiwei Wang AU - Xiangyu Zhou TI - Linear isometric invariants of bounded domains JO - Izvestiya. Mathematics PY - 2024 SP - 626 EP - 638 VL - 88 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2024_88_4_a1/ LA - en ID - IM2_2024_88_4_a1 ER -
Fusheng Deng; Jiafu Ning; Zhiwei Wang; Xiangyu Zhou. Linear isometric invariants of bounded domains. Izvestiya. Mathematics , Tome 88 (2024) no. 4, pp. 626-638. http://geodesic.mathdoc.fr/item/IM2_2024_88_4_a1/
[1] S. Antonakoudis, Norms on pluricanonical forms: Preliminary version–a first draft, unpublished notes
[2] Bo-Yong Chen, “Every bounded pseudo-convex domain with Hölder boundary is hyperconvex”, Bull. Lond. Math. Soc., 53:4 (2021), 1009–1015 | DOI | MR | Zbl
[3] Chen-Yu Chi, “Pseudonorms and theorems of Torelli type”, J. Differential Geom., 104:2 (2016), 239–273 | DOI | MR | Zbl
[4] Chen-Yu Chi and Shing-Tung Yau, “A geometric approach to problems in birational geometry”, Proc. Natl. Acad. Sci. USA, 105:48 (2008), 18696–18701 | DOI | MR | Zbl
[5] Fusheng Deng, Zhiwei Wang, Liyou Zhang, and Xiangyu Zhou, “Linear invariants of complex manifolds and their plurisubharmonic variations”, J. Funct. Anal., 279:1 (2020), 108514 | DOI | MR | Zbl
[6] T. Inayama, Pseudonorms on direct images of pluricanonical bundles, arXiv: 1910.05771
[7] S. Kobayashi, Hyperbolic complex spaces, Grundlehren Math. Wiss., 318, Springer-Verlag, Berlin, 1998 | DOI | MR | Zbl
[8] N. Lakic, “An isometry theorem for quadratic differentials on Riemann surfaces of finite genus”, Trans. Amer. Math. Soc., 349:7 (1997), 2951–2967 | DOI | MR | Zbl
[9] V. Markovic, “Biholomorphic maps between Teichmüller spaces”, Duke Math. J., 120:2 (2003), 405–431 | DOI | MR | Zbl
[10] Jiafu Ning, Huiping Zhang, and Xiangyu Zhou, “On $p$-Bergman kernel for bounded domains in $\mathbb C^n$”, Comm. Anal. Geom., 24:4 (2016), 887–900 | DOI | MR | Zbl
[11] W. Rudin, “$L^{p}$-isometries and equimeasurability”, Indiana Univ. Math. J., 25:3 (1976), 215–228 | DOI | MR | Zbl
[12] W. Rudin, Function theory in the unit ball of $\mathbb C^n$, Grundlehren Math. Wiss., 241, Springer-Verlag, New York–Berlin, 1980 | DOI | MR | Zbl
[13] Shing-Tung Yau, “On the pseudonorm project of birational classification of algebraic varieties”, Geometry and analysis on manifolds, Progr. Math., 308, Birkhäuser/Springer, Cham, 2015, 327–339 | DOI | MR | Zbl