Linear isometric invariants of bounded domains
Izvestiya. Mathematics , Tome 88 (2024) no. 4, pp. 626-638.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce two new conditions for bounded domains, namely $A^p$-completeness and boundary blow down type, and show that, for two bounded domains $D_1$ and $D_2$ that are $A^p$-complete and not of boundary blow down type, if there exists a linear isometry from $A^p(D_1)$ to $A^{p}(D_2)$ for some real number $p>0$ with $p\neq $ even integers, then $D_1$ and $D_2$ must be holomorphically equivalent, where, for a domain $D$, $A^p(D)$ denotes the space of $L^p$ holomorphic functions on $D$.
Keywords: linear isometry, $A^p$-complete, biholomorphic equivalent.
@article{IM2_2024_88_4_a1,
     author = {Fusheng Deng and Jiafu Ning and Zhiwei Wang and Xiangyu Zhou},
     title = {Linear isometric invariants of bounded domains},
     journal = {Izvestiya. Mathematics },
     pages = {626--638},
     publisher = {mathdoc},
     volume = {88},
     number = {4},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_4_a1/}
}
TY  - JOUR
AU  - Fusheng Deng
AU  - Jiafu Ning
AU  - Zhiwei Wang
AU  - Xiangyu Zhou
TI  - Linear isometric invariants of bounded domains
JO  - Izvestiya. Mathematics 
PY  - 2024
SP  - 626
EP  - 638
VL  - 88
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2024_88_4_a1/
LA  - en
ID  - IM2_2024_88_4_a1
ER  - 
%0 Journal Article
%A Fusheng Deng
%A Jiafu Ning
%A Zhiwei Wang
%A Xiangyu Zhou
%T Linear isometric invariants of bounded domains
%J Izvestiya. Mathematics 
%D 2024
%P 626-638
%V 88
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2024_88_4_a1/
%G en
%F IM2_2024_88_4_a1
Fusheng Deng; Jiafu Ning; Zhiwei Wang; Xiangyu Zhou. Linear isometric invariants of bounded domains. Izvestiya. Mathematics , Tome 88 (2024) no. 4, pp. 626-638. http://geodesic.mathdoc.fr/item/IM2_2024_88_4_a1/

[1] S. Antonakoudis, Norms on pluricanonical forms: Preliminary version–a first draft, unpublished notes

[2] Bo-Yong Chen, “Every bounded pseudo-convex domain with Hölder boundary is hyperconvex”, Bull. Lond. Math. Soc., 53:4 (2021), 1009–1015 | DOI | MR | Zbl

[3] Chen-Yu Chi, “Pseudonorms and theorems of Torelli type”, J. Differential Geom., 104:2 (2016), 239–273 | DOI | MR | Zbl

[4] Chen-Yu Chi and Shing-Tung Yau, “A geometric approach to problems in birational geometry”, Proc. Natl. Acad. Sci. USA, 105:48 (2008), 18696–18701 | DOI | MR | Zbl

[5] Fusheng Deng, Zhiwei Wang, Liyou Zhang, and Xiangyu Zhou, “Linear invariants of complex manifolds and their plurisubharmonic variations”, J. Funct. Anal., 279:1 (2020), 108514 | DOI | MR | Zbl

[6] T. Inayama, Pseudonorms on direct images of pluricanonical bundles, arXiv: 1910.05771

[7] S. Kobayashi, Hyperbolic complex spaces, Grundlehren Math. Wiss., 318, Springer-Verlag, Berlin, 1998 | DOI | MR | Zbl

[8] N. Lakic, “An isometry theorem for quadratic differentials on Riemann surfaces of finite genus”, Trans. Amer. Math. Soc., 349:7 (1997), 2951–2967 | DOI | MR | Zbl

[9] V. Markovic, “Biholomorphic maps between Teichmüller spaces”, Duke Math. J., 120:2 (2003), 405–431 | DOI | MR | Zbl

[10] Jiafu Ning, Huiping Zhang, and Xiangyu Zhou, “On $p$-Bergman kernel for bounded domains in $\mathbb C^n$”, Comm. Anal. Geom., 24:4 (2016), 887–900 | DOI | MR | Zbl

[11] W. Rudin, “$L^{p}$-isometries and equimeasurability”, Indiana Univ. Math. J., 25:3 (1976), 215–228 | DOI | MR | Zbl

[12] W. Rudin, Function theory in the unit ball of $\mathbb C^n$, Grundlehren Math. Wiss., 241, Springer-Verlag, New York–Berlin, 1980 | DOI | MR | Zbl

[13] Shing-Tung Yau, “On the pseudonorm project of birational classification of algebraic varieties”, Geometry and analysis on manifolds, Progr. Math., 308, Birkhäuser/Springer, Cham, 2015, 327–339 | DOI | MR | Zbl