Linear isometric invariants of bounded domains
Izvestiya. Mathematics , Tome 88 (2024) no. 4, pp. 626-638
Voir la notice de l'article provenant de la source Math-Net.Ru
We introduce two new conditions for bounded domains, namely $A^p$-completeness
and boundary blow down type, and show that, for two bounded domains $D_1$ and $D_2$ that are $A^p$-complete and not of boundary blow down type, if there exists a linear isometry from $A^p(D_1)$ to $A^{p}(D_2)$ for some real number $p>0$ with $p\neq $ even integers, then $D_1$ and $D_2$ must be holomorphically equivalent, where,
for a domain $D$, $A^p(D)$ denotes the space of $L^p$ holomorphic functions on $D$.
Keywords:
linear isometry, $A^p$-complete, biholomorphic equivalent.
@article{IM2_2024_88_4_a1,
author = {Fusheng Deng and Jiafu Ning and Zhiwei Wang and Xiangyu Zhou},
title = {Linear isometric invariants of bounded domains},
journal = {Izvestiya. Mathematics },
pages = {626--638},
publisher = {mathdoc},
volume = {88},
number = {4},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_4_a1/}
}
TY - JOUR AU - Fusheng Deng AU - Jiafu Ning AU - Zhiwei Wang AU - Xiangyu Zhou TI - Linear isometric invariants of bounded domains JO - Izvestiya. Mathematics PY - 2024 SP - 626 EP - 638 VL - 88 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2024_88_4_a1/ LA - en ID - IM2_2024_88_4_a1 ER -
Fusheng Deng; Jiafu Ning; Zhiwei Wang; Xiangyu Zhou. Linear isometric invariants of bounded domains. Izvestiya. Mathematics , Tome 88 (2024) no. 4, pp. 626-638. http://geodesic.mathdoc.fr/item/IM2_2024_88_4_a1/