Linear isometric invariants of bounded domains
Izvestiya. Mathematics , Tome 88 (2024) no. 4, pp. 626-638

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce two new conditions for bounded domains, namely $A^p$-completeness and boundary blow down type, and show that, for two bounded domains $D_1$ and $D_2$ that are $A^p$-complete and not of boundary blow down type, if there exists a linear isometry from $A^p(D_1)$ to $A^{p}(D_2)$ for some real number $p>0$ with $p\neq $ even integers, then $D_1$ and $D_2$ must be holomorphically equivalent, where, for a domain $D$, $A^p(D)$ denotes the space of $L^p$ holomorphic functions on $D$.
Keywords: linear isometry, $A^p$-complete, biholomorphic equivalent.
@article{IM2_2024_88_4_a1,
     author = {Fusheng Deng and Jiafu Ning and Zhiwei Wang and Xiangyu Zhou},
     title = {Linear isometric invariants of bounded domains},
     journal = {Izvestiya. Mathematics },
     pages = {626--638},
     publisher = {mathdoc},
     volume = {88},
     number = {4},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_4_a1/}
}
TY  - JOUR
AU  - Fusheng Deng
AU  - Jiafu Ning
AU  - Zhiwei Wang
AU  - Xiangyu Zhou
TI  - Linear isometric invariants of bounded domains
JO  - Izvestiya. Mathematics 
PY  - 2024
SP  - 626
EP  - 638
VL  - 88
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2024_88_4_a1/
LA  - en
ID  - IM2_2024_88_4_a1
ER  - 
%0 Journal Article
%A Fusheng Deng
%A Jiafu Ning
%A Zhiwei Wang
%A Xiangyu Zhou
%T Linear isometric invariants of bounded domains
%J Izvestiya. Mathematics 
%D 2024
%P 626-638
%V 88
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2024_88_4_a1/
%G en
%F IM2_2024_88_4_a1
Fusheng Deng; Jiafu Ning; Zhiwei Wang; Xiangyu Zhou. Linear isometric invariants of bounded domains. Izvestiya. Mathematics , Tome 88 (2024) no. 4, pp. 626-638. http://geodesic.mathdoc.fr/item/IM2_2024_88_4_a1/