On subspaces of Orlicz spaces spanned by independent copies
Izvestiya. Mathematics , Tome 88 (2024) no. 4, pp. 601-625

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the subspaces of the Orlicz spaces $L_M$ spanned by independent copies $f_k$, $k=1,2,\dots$, of a function $f\in L_M$, $\int_0^1 f(t)\,dt=0$. Any such a subspace $H$ is isomorphic to some Orlicz sequence space $\ell_\psi$. In terms of dilations of the function $f$, a description of strongly embedded subspaces of this type is obtained, and conditions guaranteeing that the unit ball of such a subspace consists of functions with equicontinuous norms in $L_M$ are found. In particular, we prove that there is a wide class of Orlicz spaces $L_M$ (containing the $L^p$-spaces, $1\le p 2$), for which each of the above properties of $H$ holds if and only if the Matuszewska–Orlicz indices of the functions $M$ and $\psi$ satisfy $\alpha_\psi^0>\beta_M^\infty$.
Keywords: independent functions, symmetric space, strongly embedded subspace, Orlicz function, Orlicz space, Matuszewska–Orlicz indices.
@article{IM2_2024_88_4_a0,
     author = {S. V. Astashkin},
     title = {On subspaces of {Orlicz} spaces spanned by independent copies},
     journal = {Izvestiya. Mathematics },
     pages = {601--625},
     publisher = {mathdoc},
     volume = {88},
     number = {4},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2024_88_4_a0/}
}
TY  - JOUR
AU  - S. V. Astashkin
TI  - On subspaces of Orlicz spaces spanned by independent copies
JO  - Izvestiya. Mathematics 
PY  - 2024
SP  - 601
EP  - 625
VL  - 88
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2024_88_4_a0/
LA  - en
ID  - IM2_2024_88_4_a0
ER  - 
%0 Journal Article
%A S. V. Astashkin
%T On subspaces of Orlicz spaces spanned by independent copies
%J Izvestiya. Mathematics 
%D 2024
%P 601-625
%V 88
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2024_88_4_a0/
%G en
%F IM2_2024_88_4_a0
S. V. Astashkin. On subspaces of Orlicz spaces spanned by independent copies. Izvestiya. Mathematics , Tome 88 (2024) no. 4, pp. 601-625. http://geodesic.mathdoc.fr/item/IM2_2024_88_4_a0/