Elementary equivalence of linear groups over rings with a~finite number of central idempotents and over Boolean rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 1, pp. 45-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we start with a criterion of elementary equivalence of linear groups over rings with just a finite number of central idempotents. Then we study elementary equivalence of linear groups over Boolean algebras. We prove that two linear groups over Boolean algebras are elementarily equivalent if and only if their dimensions coincide and these Boolean algebras are elementarily equivalent.
@article{FPM_2013_18_1_a3,
     author = {V. A. Bragin and E. I. Bunina},
     title = {Elementary equivalence of linear groups over rings with a~finite number of central idempotents and over {Boolean} rings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {45--55},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a3/}
}
TY  - JOUR
AU  - V. A. Bragin
AU  - E. I. Bunina
TI  - Elementary equivalence of linear groups over rings with a~finite number of central idempotents and over Boolean rings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2013
SP  - 45
EP  - 55
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a3/
LA  - ru
ID  - FPM_2013_18_1_a3
ER  - 
%0 Journal Article
%A V. A. Bragin
%A E. I. Bunina
%T Elementary equivalence of linear groups over rings with a~finite number of central idempotents and over Boolean rings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2013
%P 45-55
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a3/
%G ru
%F FPM_2013_18_1_a3
V. A. Bragin; E. I. Bunina. Elementary equivalence of linear groups over rings with a~finite number of central idempotents and over Boolean rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 1, pp. 45-55. http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a3/

[1] Vladimirov D. A., Bulevy algebry, Nauka, M., 1969 | MR

[2] Golubchik I. Z., Mikhalëv A. V., “Izomorfizmy obschei lineinoi gruppy nad assotsiativnymi koltsami”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1983, no. 3, 61–72 | MR | Zbl

[3] Maltsev A. I., “Ob elementarnykh svoistvakh lineinykh grupp”, Problemy matematiki i mekhaniki, Novosibirsk, 1961, 110–132 | Zbl

[4] Beidar C. I., Mikhalev A. V., “On Mal'cev's theorem on elementary equivalence of linear groups”, Contemp. Math., 131:1 (1992), 29–35 | DOI | MR | Zbl

[5] Burris S. N., Sankappanavar H. P., A Course in Universal Algebra, Springer, Berlin, 1981, 116–191 | DOI | MR

[6] Golubchik I. Z., “Isomorphisms of the general linear group $\mathrm{GL}_n(R)$, $n\geq4$, over an associative ring”, Contemp. Math., 131 (1992), 123–137 | DOI | MR

[7] Keisler H. J., “Ultraproducts and elementary classes”, Proc. Konink. Nederl. Akad. Wetensch. Ser. A, 64 (1961), 477–495 | MR | Zbl

[8] Shelah S., “Every two elementarily equivalent models have isomorphic ultrapowers”, Israel J. Math., 10 (1972), 224–233 | DOI | MR

[9] Stephenson W., “Lattice isomorphism between modules”, J. London Math. Soc., 1 (1969), 177–188 | DOI | MR