Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2013_18_1_a3, author = {V. A. Bragin and E. I. Bunina}, title = {Elementary equivalence of linear groups over rings with a~finite number of central idempotents and over {Boolean} rings}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {45--55}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a3/} }
TY - JOUR AU - V. A. Bragin AU - E. I. Bunina TI - Elementary equivalence of linear groups over rings with a~finite number of central idempotents and over Boolean rings JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2013 SP - 45 EP - 55 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a3/ LA - ru ID - FPM_2013_18_1_a3 ER -
%0 Journal Article %A V. A. Bragin %A E. I. Bunina %T Elementary equivalence of linear groups over rings with a~finite number of central idempotents and over Boolean rings %J Fundamentalʹnaâ i prikladnaâ matematika %D 2013 %P 45-55 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a3/ %G ru %F FPM_2013_18_1_a3
V. A. Bragin; E. I. Bunina. Elementary equivalence of linear groups over rings with a~finite number of central idempotents and over Boolean rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 1, pp. 45-55. http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a3/
[1] Vladimirov D. A., Bulevy algebry, Nauka, M., 1969 | MR
[2] Golubchik I. Z., Mikhalëv A. V., “Izomorfizmy obschei lineinoi gruppy nad assotsiativnymi koltsami”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1983, no. 3, 61–72 | MR | Zbl
[3] Maltsev A. I., “Ob elementarnykh svoistvakh lineinykh grupp”, Problemy matematiki i mekhaniki, Novosibirsk, 1961, 110–132 | Zbl
[4] Beidar C. I., Mikhalev A. V., “On Mal'cev's theorem on elementary equivalence of linear groups”, Contemp. Math., 131:1 (1992), 29–35 | DOI | MR | Zbl
[5] Burris S. N., Sankappanavar H. P., A Course in Universal Algebra, Springer, Berlin, 1981, 116–191 | DOI | MR
[6] Golubchik I. Z., “Isomorphisms of the general linear group $\mathrm{GL}_n(R)$, $n\geq4$, over an associative ring”, Contemp. Math., 131 (1992), 123–137 | DOI | MR
[7] Keisler H. J., “Ultraproducts and elementary classes”, Proc. Konink. Nederl. Akad. Wetensch. Ser. A, 64 (1961), 477–495 | MR | Zbl
[8] Shelah S., “Every two elementarily equivalent models have isomorphic ultrapowers”, Israel J. Math., 10 (1972), 224–233 | DOI | MR
[9] Stephenson W., “Lattice isomorphism between modules”, J. London Math. Soc., 1 (1969), 177–188 | DOI | MR