Elementary equivalence of linear groups over rings with a~finite number of central idempotents and over Boolean rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 1, pp. 45-55
Voir la notice de l'article provenant de la source Math-Net.Ru
In the present paper, we start with a criterion of elementary equivalence of linear groups over rings with just a finite number of central idempotents. Then we study elementary equivalence of linear groups over Boolean algebras. We prove that two linear groups over Boolean algebras are elementarily equivalent if and only if their dimensions coincide and these Boolean algebras are elementarily equivalent.
@article{FPM_2013_18_1_a3,
author = {V. A. Bragin and E. I. Bunina},
title = {Elementary equivalence of linear groups over rings with a~finite number of central idempotents and over {Boolean} rings},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {45--55},
publisher = {mathdoc},
volume = {18},
number = {1},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a3/}
}
TY - JOUR AU - V. A. Bragin AU - E. I. Bunina TI - Elementary equivalence of linear groups over rings with a~finite number of central idempotents and over Boolean rings JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2013 SP - 45 EP - 55 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a3/ LA - ru ID - FPM_2013_18_1_a3 ER -
%0 Journal Article %A V. A. Bragin %A E. I. Bunina %T Elementary equivalence of linear groups over rings with a~finite number of central idempotents and over Boolean rings %J Fundamentalʹnaâ i prikladnaâ matematika %D 2013 %P 45-55 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a3/ %G ru %F FPM_2013_18_1_a3
V. A. Bragin; E. I. Bunina. Elementary equivalence of linear groups over rings with a~finite number of central idempotents and over Boolean rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 1, pp. 45-55. http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a3/