An example of two cardinals that are equivalent in the $n$-order logic and not equivalent in the $(n+1)$-order logic
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 1, pp. 35-44
It is proved that the property of two models to be equivalent in the $n$th order logic is definable in the $(n+1)$th order logic. Basing on this fact, there is given an (nonconstructive) “example” of two $n$-order equivalent cardinal numbers that are not $(n+1)$-order equivalent.
@article{FPM_2013_18_1_a2,
author = {V. A. Bragin and E. I. Bunina},
title = {An example of two cardinals that are equivalent in the $n$-order logic and not equivalent in the $(n+1)$-order logic},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {35--44},
year = {2013},
volume = {18},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a2/}
}
TY - JOUR AU - V. A. Bragin AU - E. I. Bunina TI - An example of two cardinals that are equivalent in the $n$-order logic and not equivalent in the $(n+1)$-order logic JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2013 SP - 35 EP - 44 VL - 18 IS - 1 UR - http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a2/ LA - ru ID - FPM_2013_18_1_a2 ER -
%0 Journal Article %A V. A. Bragin %A E. I. Bunina %T An example of two cardinals that are equivalent in the $n$-order logic and not equivalent in the $(n+1)$-order logic %J Fundamentalʹnaâ i prikladnaâ matematika %D 2013 %P 35-44 %V 18 %N 1 %U http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a2/ %G ru %F FPM_2013_18_1_a2
V. A. Bragin; E. I. Bunina. An example of two cardinals that are equivalent in the $n$-order logic and not equivalent in the $(n+1)$-order logic. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 1, pp. 35-44. http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a2/
[1] Brudno A. L., Teoriya funktsii deistvitelnogo peremennogo, Nauka, M., 1971 | MR | Zbl
[2] Bunina E. I., Mikhalëv A. V., “Elementarnaya ekvivalentnost kolets endomorfizmov abelevykh $p$-grupp”, Fundament. i prikl. mat., 10:2 (2004), 135–224 | MR | Zbl
[3] Keisler G., Chen Ch. Ch., Teoriya modelei, Mir, M., 1977 | MR
[4] Pinus A. G., “Svoistvo Lëvengeima–Skulema dlya logiki vtorogo poryadka”, Rekursivnye funktsii, Ivanovsk. gos. univ., Ivanovo, 1978, 55–60 | MR
[5] Poizat B., A Course in Model Theory: An Introduction to Contemporary Mathematical Logic, Springer, Berlin, 2000 | MR