An example of two cardinals that are equivalent in the $n$-order logic and not equivalent in the $(n+1)$-order logic
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 1, pp. 35-44

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the property of two models to be equivalent in the $n$th order logic is definable in the $(n+1)$th order logic. Basing on this fact, there is given an (nonconstructive) “example” of two $n$-order equivalent cardinal numbers that are not $(n+1)$-order equivalent.
@article{FPM_2013_18_1_a2,
     author = {V. A. Bragin and E. I. Bunina},
     title = {An example of two cardinals that are equivalent in the $n$-order logic and not equivalent in the $(n+1)$-order logic},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {35--44},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a2/}
}
TY  - JOUR
AU  - V. A. Bragin
AU  - E. I. Bunina
TI  - An example of two cardinals that are equivalent in the $n$-order logic and not equivalent in the $(n+1)$-order logic
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2013
SP  - 35
EP  - 44
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a2/
LA  - ru
ID  - FPM_2013_18_1_a2
ER  - 
%0 Journal Article
%A V. A. Bragin
%A E. I. Bunina
%T An example of two cardinals that are equivalent in the $n$-order logic and not equivalent in the $(n+1)$-order logic
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2013
%P 35-44
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a2/
%G ru
%F FPM_2013_18_1_a2
V. A. Bragin; E. I. Bunina. An example of two cardinals that are equivalent in the $n$-order logic and not equivalent in the $(n+1)$-order logic. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 1, pp. 35-44. http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a2/