Numerical simulation of light propagation through a~diffuser
Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 6, pp. 33-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

Diffusers are important elements of many illumination systems, for example, in computer and mobile phone displays or advertising panels, etc. In this article, the light propagation in a diffuser with optically soft inclusions is described with the help of the Fokker–Planck equation, i.e., a transfer equation with a diffusion term in the space of radiation propagation directions. The coefficient of angle diffusion is calculated using the Mie theory. The equation is solved numerically using the stochastic analog method, and the space and angle distribution of the radiation that passed through the diffuser is calculated. The results can be useful for diffuser parameters optimization, and the method can be applied to many problems of turbid media with optically soft particles.
@article{FPM_2009_15_6_a2,
     author = {A. V. Dmitriev and A. V. Ivanov and A. R. Khokhlov},
     title = {Numerical simulation of light propagation through a~diffuser},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {33--41},
     publisher = {mathdoc},
     volume = {15},
     number = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2009_15_6_a2/}
}
TY  - JOUR
AU  - A. V. Dmitriev
AU  - A. V. Ivanov
AU  - A. R. Khokhlov
TI  - Numerical simulation of light propagation through a~diffuser
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2009
SP  - 33
EP  - 41
VL  - 15
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2009_15_6_a2/
LA  - ru
ID  - FPM_2009_15_6_a2
ER  - 
%0 Journal Article
%A A. V. Dmitriev
%A A. V. Ivanov
%A A. R. Khokhlov
%T Numerical simulation of light propagation through a~diffuser
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2009
%P 33-41
%V 15
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2009_15_6_a2/
%G ru
%F FPM_2009_15_6_a2
A. V. Dmitriev; A. V. Ivanov; A. R. Khokhlov. Numerical simulation of light propagation through a~diffuser. Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 6, pp. 33-41. http://geodesic.mathdoc.fr/item/FPM_2009_15_6_a2/

[1] Apresyan L. A., Kravtsov Yu. A., Teoriya perenosa izlucheniya. Statisticheskie i volnovye aspekty, Nauka, M., 1983

[2] Boren K., Khafmen D., Pogloschenie i rasseyanie sveta malymi chastitsami, M., 1986 | Zbl

[3] Dmitriev A. V., Osnovy statisticheskoi fiziki materialov, Izd-vo Mosk. un-ta, M.; Nauka, M., 2004

[4] Zmievskaya G. I., “Chislennye stokhasticheskie modeli neravnovesnykh protsessov”, Mat. modelirovanie, 8:11 (1996), 3–40 | MR | Zbl

[5] Ivanov A. V., “Kineticheskoe modelirovanie dinamiki magnetikov”, Mat. modelirovanie, 19:10 (2007), 89–104 | MR | Zbl

[6] Korn G. A., Korn T.M., Spravochnik po matematike, M., 1981

[7] Lifshits E. M., Pitaevskii L. P., Fizicheskaya kinetika, Fizmatlit, M., 2001

[8] Sobolev V. V., DAN SSSR, 177:4 (1967), 812–815

[9] Sobolev V. V., Rasseyanie sveta v atmosferakh planet, Nauka, M., 1972

[10] Van de Khyulst G., Rasseyanie sveta malymi chastitsami, Izd. inostr. lit., M., 1961

[11] Chandrasekar S., Perenos luchistoi energii, M., 1953

[12] Babenko V. A., Astafyeva L. G., Kuzmin V. N., Electromagnetic Scattering in Disperse Media, Springer, Berlin, 2003 | Zbl

[13] Mishchenko M. M., Davis L. D., Lacis A. A., Scattering, Absorption, and Emission of Light by Small Particles, Cambridge University Press, 2002

[14] Wiscombe W. J., “Improved Mie scattering algorithms”, Appl. Optim., 19 (1980), 1505–1509 | DOI