On perfect finite-dimensional Lie algebras, satisfying standard Lie identity of degree 5
Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 1, pp. 125-131.

Voir la notice de l'article provenant de la source Math-Net.Ru

Finite-dimensional Lie algebras satisfying standard Lie identity of degree 5 are considered. A base field $K$ is algebraically closed and of zero characteristic. It is shown that any such algebra can be decomposed into a direct sum of a soluble algebra and a perfect one. It is proved that any such perfect algebra is isomorphic to $A\otimes_Ksl_2$, for a certain commutative and associative $K$-algebra $A$ with unit element, and, thus, satisfies the same identities as Lie algebra $sl_2$.
@article{FPM_1996_2_1_a4,
     author = {K. A. Zubrilin and A. Yu. Stepanov},
     title = {On perfect finite-dimensional {Lie} algebras, satisfying standard {Lie} identity of degree 5},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {125--131},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1996_2_1_a4/}
}
TY  - JOUR
AU  - K. A. Zubrilin
AU  - A. Yu. Stepanov
TI  - On perfect finite-dimensional Lie algebras, satisfying standard Lie identity of degree 5
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1996
SP  - 125
EP  - 131
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1996_2_1_a4/
LA  - ru
ID  - FPM_1996_2_1_a4
ER  - 
%0 Journal Article
%A K. A. Zubrilin
%A A. Yu. Stepanov
%T On perfect finite-dimensional Lie algebras, satisfying standard Lie identity of degree 5
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1996
%P 125-131
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1996_2_1_a4/
%G ru
%F FPM_1996_2_1_a4
K. A. Zubrilin; A. Yu. Stepanov. On perfect finite-dimensional Lie algebras, satisfying standard Lie identity of degree 5. Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 1, pp. 125-131. http://geodesic.mathdoc.fr/item/FPM_1996_2_1_a4/