On diagonalizability of regular matrices over rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 1, pp. 103-111 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Some results on the problem of the diagonalizability of an arbitrary von Neumann regular matrix over an associative ring with unit are proved. There are constructed two examples of rings which refute the next conjecture of J. Van-Geel and D. Huylebrouck: if $R$ is an ID-ring (i.e. all idempotent matrices over $R$ are diagonalizable) then every von Neumann regular matrix over $R$ is diagonalizable.
@article{FPM_1996_2_1_a2,
     author = {T. V. Golovacheva},
     title = {On diagonalizability of regular matrices over rings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {103--111},
     year = {1996},
     volume = {2},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1996_2_1_a2/}
}
TY  - JOUR
AU  - T. V. Golovacheva
TI  - On diagonalizability of regular matrices over rings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1996
SP  - 103
EP  - 111
VL  - 2
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/FPM_1996_2_1_a2/
LA  - ru
ID  - FPM_1996_2_1_a2
ER  - 
%0 Journal Article
%A T. V. Golovacheva
%T On diagonalizability of regular matrices over rings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1996
%P 103-111
%V 2
%N 1
%U http://geodesic.mathdoc.fr/item/FPM_1996_2_1_a2/
%G ru
%F FPM_1996_2_1_a2
T. V. Golovacheva. On diagonalizability of regular matrices over rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 1, pp. 103-111. http://geodesic.mathdoc.fr/item/FPM_1996_2_1_a2/