The joint spectral radius and invariant sets of the several linear operators
Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 1, pp. 205-231
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper concerns the properties of the joint spectral radius of the several linear $n$-dimensional operators:
$$
\hat{\rho}(A_1,\ldots,A_k)=\lim\limits_{m\to\infty}\,\max\limits_{\sigma}
\|A_{\sigma (1)}\ldots A_{\sigma (m)}\|^{\frac{1}{m}},\quad
\sigma\colon\ \{1,\ldots,m\}\to\{1,\ldots,k\}.
$$
The theorem of Dranishnikov–Konyagin on the existence of invariant convex set $M$ for several linear operators is proved. $\operatorname{Conv}(A_1M,\ldots,A_kM)=\lambda M$,
$\lambda=\hat{\rho}(A_1,\ldots,A_k)$. Paper concludes with several boundary propositions on construction of the invariant sets, some properties of the invariant sets and algorithm of finding the joint spectral radius with estimation of its difficulty.
@article{FPM_1996_2_1_a10,
author = {V. Yu. Protasov},
title = {The joint spectral radius and invariant sets of the several linear operators},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {205--231},
publisher = {mathdoc},
volume = {2},
number = {1},
year = {1996},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1996_2_1_a10/}
}
TY - JOUR AU - V. Yu. Protasov TI - The joint spectral radius and invariant sets of the several linear operators JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 1996 SP - 205 EP - 231 VL - 2 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_1996_2_1_a10/ LA - ru ID - FPM_1996_2_1_a10 ER -
V. Yu. Protasov. The joint spectral radius and invariant sets of the several linear operators. Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 1, pp. 205-231. http://geodesic.mathdoc.fr/item/FPM_1996_2_1_a10/