The Nagata--Higman theorem for semirings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 2, pp. 523-527.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper contains the proof of the Nagata–Higman theorem for semirings (with non-commutative addition in general). The main results are the following: Theorem. Let $A$ be an $l$-generated semiring with commutative addition in which the identity $x^{m}=0$ is satisfied. Then the nilpotency index of $A$ is not greater than $2l^{m+1}m^{3}$. Nagata–Higman theorem for general semirings. If an $l$-generated semiring satisfies the identity $x^{m}=0$ than every word in it of length greater than $m^{m}\cdot2l^{m+1}m^{3}+ m$ is zero.
@article{FPM_1995_1_2_a11,
     author = {A. Ya. Belov},
     title = {The {Nagata--Higman} theorem for semirings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {523--527},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a11/}
}
TY  - JOUR
AU  - A. Ya. Belov
TI  - The Nagata--Higman theorem for semirings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1995
SP  - 523
EP  - 527
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a11/
LA  - ru
ID  - FPM_1995_1_2_a11
ER  - 
%0 Journal Article
%A A. Ya. Belov
%T The Nagata--Higman theorem for semirings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1995
%P 523-527
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a11/
%G ru
%F FPM_1995_1_2_a11
A. Ya. Belov. The Nagata--Higman theorem for semirings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 2, pp. 523-527. http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a11/

[1] A. J. Belov, “Some estimations for nilpotence of nill-algebras over a field of an arbitrary characteristic and height theorem”, Comm. in Algebra, 1992, 2919–2922 | DOI | MR | Zbl