The Nagata--Higman theorem for semirings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 2, pp. 523-527
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper contains the proof of the Nagata–Higman theorem for semirings (with non-commutative addition in general). The main results are the following:
Theorem. Let $A$ be an $l$-generated semiring with commutative addition in which the identity $x^{m}=0$ is satisfied. Then the nilpotency index of $A$ is not greater than $2l^{m+1}m^{3}$.
Nagata–Higman theorem for general semirings. If an $l$-generated semiring satisfies the identity $x^{m}=0$ than every word in it of length greater than $m^{m}\cdot2l^{m+1}m^{3}+ m$ is zero.
@article{FPM_1995_1_2_a11,
author = {A. Ya. Belov},
title = {The {Nagata--Higman} theorem for semirings},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {523--527},
publisher = {mathdoc},
volume = {1},
number = {2},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a11/}
}
A. Ya. Belov. The Nagata--Higman theorem for semirings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 2, pp. 523-527. http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a11/