Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2023_23_1_a3, author = {I. B. Kozhukhov and A. S. Sotov}, title = {Cantor property of quasi-unitary acts over completely (0-)simple semigroups}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {27--33}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2023_23_1_a3/} }
TY - JOUR AU - I. B. Kozhukhov AU - A. S. Sotov TI - Cantor property of quasi-unitary acts over completely (0-)simple semigroups JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2023 SP - 27 EP - 33 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2023_23_1_a3/ LA - ru ID - DVMG_2023_23_1_a3 ER -
I. B. Kozhukhov; A. S. Sotov. Cantor property of quasi-unitary acts over completely (0-)simple semigroups. Dalʹnevostočnyj matematičeskij žurnal, Tome 23 (2023) no. 1, pp. 27-33. http://geodesic.mathdoc.fr/item/DVMG_2023_23_1_a3/
[1] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR
[2] A. S. Sotov, “Teorema Kantora – Bernshteina dlya poligonov nad gruppami”, Materialy VI Mezhd. konf. SITONI-2019, Izd-vo DonNTU, Donetsk, 2019, 120–123
[3] M. Kilp, U. Knauer, A. V. Mikhalev, Monoids, acts and categories, W. de Gruyter, Berlin – N.-Y., 2000 | MR | Zbl
[4] I. B. Kozhukhov, A. V. Mikhalev, “Poligony nad polugruppami.”, Fundamentalnaya i prikladnaya matematika, 23:3 (2020), 141–191
[5] A. Klifford, G. Preston, Algebraicheskaya teoriya polugrupp, v. 1, 2, Mir, M., 1987
[6] A. Yu. Avdeyev, I. B. Kozhukhov, “Acts over completely 0-simple semigroups”, Acta Cybernetica, 14:4 (2000), 523–531 | MR | Zbl
[7] I. B. Kozhukhov, A. O. Petrikov, “Proektivnye i in'ektivnye poligony nad vpolne prostymi polugruppami”, Fundamentalnaya i prikladnaya matematika, 21:1 (2016), 123–133 | MR
[8] I. B. Kozhukhov, A. O. Petrikov, “Proektivnye i in'ektivnye poligony nad vpolne 0-prostoi polugruppoi”, Chebyshevskii sb., 17:4 (2016), 65–78 | DOI | MR | Zbl