Cantor property of quasi-unitary acts over completely (0-)simple semigroups
Dalʹnevostočnyj matematičeskij žurnal, Tome 23 (2023) no. 1, pp. 27-33
Voir la notice de l'article provenant de la source Math-Net.Ru
A universal algebra $A$ is called cantorian if for any algebra $B$ of the same signature, the existence of injective homomorphisms $A\to B$ and $B \to A$ implies an isomorphism of algebras $A$ and $B$. A right act $X$ over a semigroup $S$ is called quasiunitary if $X=XS$. We prove that every quasiunitary act over a completely simple semigroup and also every quasiunitary act with zero over a completely 0-simple semigroup are cantorian.
@article{DVMG_2023_23_1_a3,
author = {I. B. Kozhukhov and A. S. Sotov},
title = {Cantor property of quasi-unitary acts over completely (0-)simple semigroups},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {27--33},
publisher = {mathdoc},
volume = {23},
number = {1},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2023_23_1_a3/}
}
TY - JOUR AU - I. B. Kozhukhov AU - A. S. Sotov TI - Cantor property of quasi-unitary acts over completely (0-)simple semigroups JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2023 SP - 27 EP - 33 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2023_23_1_a3/ LA - ru ID - DVMG_2023_23_1_a3 ER -
I. B. Kozhukhov; A. S. Sotov. Cantor property of quasi-unitary acts over completely (0-)simple semigroups. Dalʹnevostočnyj matematičeskij žurnal, Tome 23 (2023) no. 1, pp. 27-33. http://geodesic.mathdoc.fr/item/DVMG_2023_23_1_a3/