Cantor property of quasi-unitary acts over completely (0-)simple semigroups
Dalʹnevostočnyj matematičeskij žurnal, Tome 23 (2023) no. 1, pp. 27-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

A universal algebra $A$ is called cantorian if for any algebra $B$ of the same signature, the existence of injective homomorphisms $A\to B$ and $B \to A$ implies an isomorphism of algebras $A$ and $B$. A right act $X$ over a semigroup $S$ is called quasiunitary if $X=XS$. We prove that every quasiunitary act over a completely simple semigroup and also every quasiunitary act with zero over a completely 0-simple semigroup are cantorian.
@article{DVMG_2023_23_1_a3,
     author = {I. B. Kozhukhov and A. S. Sotov},
     title = {Cantor property of quasi-unitary acts over completely (0-)simple semigroups},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {27--33},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2023_23_1_a3/}
}
TY  - JOUR
AU  - I. B. Kozhukhov
AU  - A. S. Sotov
TI  - Cantor property of quasi-unitary acts over completely (0-)simple semigroups
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2023
SP  - 27
EP  - 33
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2023_23_1_a3/
LA  - ru
ID  - DVMG_2023_23_1_a3
ER  - 
%0 Journal Article
%A I. B. Kozhukhov
%A A. S. Sotov
%T Cantor property of quasi-unitary acts over completely (0-)simple semigroups
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2023
%P 27-33
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2023_23_1_a3/
%G ru
%F DVMG_2023_23_1_a3
I. B. Kozhukhov; A. S. Sotov. Cantor property of quasi-unitary acts over completely (0-)simple semigroups. Dalʹnevostočnyj matematičeskij žurnal, Tome 23 (2023) no. 1, pp. 27-33. http://geodesic.mathdoc.fr/item/DVMG_2023_23_1_a3/

[1] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR

[2] A. S. Sotov, “Teorema Kantora – Bernshteina dlya poligonov nad gruppami”, Materialy VI Mezhd. konf. SITONI-2019, Izd-vo DonNTU, Donetsk, 2019, 120–123

[3] M. Kilp, U. Knauer, A. V. Mikhalev, Monoids, acts and categories, W. de Gruyter, Berlin – N.-Y., 2000 | MR | Zbl

[4] I. B. Kozhukhov, A. V. Mikhalev, “Poligony nad polugruppami.”, Fundamentalnaya i prikladnaya matematika, 23:3 (2020), 141–191

[5] A. Klifford, G. Preston, Algebraicheskaya teoriya polugrupp, v. 1, 2, Mir, M., 1987

[6] A. Yu. Avdeyev, I. B. Kozhukhov, “Acts over completely 0-simple semigroups”, Acta Cybernetica, 14:4 (2000), 523–531 | MR | Zbl

[7] I. B. Kozhukhov, A. O. Petrikov, “Proektivnye i in'ektivnye poligony nad vpolne prostymi polugruppami”, Fundamentalnaya i prikladnaya matematika, 21:1 (2016), 123–133 | MR

[8] I. B. Kozhukhov, A. O. Petrikov, “Proektivnye i in'ektivnye poligony nad vpolne 0-prostoi polugruppoi”, Chebyshevskii sb., 17:4 (2016), 65–78 | DOI | MR | Zbl