Multi-dimensional Kronecker sequences with a small number of gap lengths
Diskretnaya Matematika, Tome 33 (2021) no. 4, pp. 11-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

Recently, generalizations of the classical Three Gap Theorem to higher dimensions attracted a lot of attention. In particular, upper bounds for the number of nearest neighbor distances have been established for the Euclidean and the maximum metric. It was proved that a generic multi-dimensional Kronecker attains the maximal possible number of different gap lengths for every sub-exponential subsequence. We mirror this result in dimension $d \in \left\{ 2, 3 \right\}$ by constructing Kronecker sequences which have a surprisingly low number of different nearest neighbor distances for infinitely $N \in \mathbb{N}$. Our proof relies on simple arguments from the theory of continued fractions.} \communicated{
Keywords: Kronecker Sequences, Nearest Neighbor Distance, Continued Fractions.
@article{DM_2021_33_4_a1,
     author = {Ch. Weiss},
     title = {Multi-dimensional {Kronecker} sequences with a small number of gap lengths},
     journal = {Diskretnaya Matematika},
     pages = {11--18},
     publisher = {mathdoc},
     volume = {33},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2021_33_4_a1/}
}
TY  - JOUR
AU  - Ch. Weiss
TI  - Multi-dimensional Kronecker sequences with a small number of gap lengths
JO  - Diskretnaya Matematika
PY  - 2021
SP  - 11
EP  - 18
VL  - 33
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2021_33_4_a1/
LA  - ru
ID  - DM_2021_33_4_a1
ER  - 
%0 Journal Article
%A Ch. Weiss
%T Multi-dimensional Kronecker sequences with a small number of gap lengths
%J Diskretnaya Matematika
%D 2021
%P 11-18
%V 33
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2021_33_4_a1/
%G ru
%F DM_2021_33_4_a1
Ch. Weiss. Multi-dimensional Kronecker sequences with a small number of gap lengths. Diskretnaya Matematika, Tome 33 (2021) no. 4, pp. 11-18. http://geodesic.mathdoc.fr/item/DM_2021_33_4_a1/

[1] Bach E., Shallit J., Algorithmic Number Theory, v. 1, Efficient Algorithms (Foundations of Computing), MIT Press, 1996 | Zbl

[2] Biringer I., Schmidt B., “The three gap theorem and {R}iemannian geometry”, Geom. Dedicata, 136 (2008), 175–190 | DOI | Zbl

[3] Eppstein D., Paterson M., Yao F., “On nearest-neighbor graphs”, Discrete Comput. Geom., 17 (1997), 263–282 | DOI | Zbl

[4] Haynes A., Marklof J., “A five distance theorem for Kronecker sequences”, 2020, arXiv: 2009.08444

[5] Haynes A., Ramirez J., “Higher dimensional gap theorems for the maximum metric”, Int. J. Number Theory, 17:07 (2021), 1665–1670 | DOI | Zbl

[6] er Some negative results related to {P}oissonian pair correlation problem, 111656, Discrete Mathematics, 343:2 (2020)

[7] Marklof J., Strömbergsson A., “The three gap theorem and the space of lattices”, Amer. Math. Monthly, 124 (2017), 471–475

[8] Niederreiter H., Random number generation and Quasi-Monte Carlo methods, CBMS-NSF SIAM, 63, Philadelphia, 1992 | Zbl

[9] Sos V., “On the distribution $\mod 1$ of the sequence $n\alpha$”, Ann. Univ. Sci. Budapest, Eötvös Sect. Math., 1 (1958), 127–134 | Zbl

[10] Taha D., “The three gap theorem, interval exchange transformations and zippered rectangles”, 2017, arXiv: 1708.04380

[11] Weiß C., “Deducing three gap theorem from rauzy-veech induction”, Revista Colombiana de Matematicas, 54 (2020), 31–37 | DOI | Zbl