Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2021_33_4_a1, author = {Ch. Weiss}, title = {Multi-dimensional {Kronecker} sequences with a small number of gap lengths}, journal = {Diskretnaya Matematika}, pages = {11--18}, publisher = {mathdoc}, volume = {33}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2021_33_4_a1/} }
Ch. Weiss. Multi-dimensional Kronecker sequences with a small number of gap lengths. Diskretnaya Matematika, Tome 33 (2021) no. 4, pp. 11-18. http://geodesic.mathdoc.fr/item/DM_2021_33_4_a1/
[1] Bach E., Shallit J., Algorithmic Number Theory, v. 1, Efficient Algorithms (Foundations of Computing), MIT Press, 1996 | Zbl
[2] Biringer I., Schmidt B., “The three gap theorem and {R}iemannian geometry”, Geom. Dedicata, 136 (2008), 175–190 | DOI | Zbl
[3] Eppstein D., Paterson M., Yao F., “On nearest-neighbor graphs”, Discrete Comput. Geom., 17 (1997), 263–282 | DOI | Zbl
[4] Haynes A., Marklof J., “A five distance theorem for Kronecker sequences”, 2020, arXiv: 2009.08444
[5] Haynes A., Ramirez J., “Higher dimensional gap theorems for the maximum metric”, Int. J. Number Theory, 17:07 (2021), 1665–1670 | DOI | Zbl
[6] er Some negative results related to {P}oissonian pair correlation problem, 111656, Discrete Mathematics, 343:2 (2020)
[7] Marklof J., Strömbergsson A., “The three gap theorem and the space of lattices”, Amer. Math. Monthly, 124 (2017), 471–475
[8] Niederreiter H., Random number generation and Quasi-Monte Carlo methods, CBMS-NSF SIAM, 63, Philadelphia, 1992 | Zbl
[9] Sos V., “On the distribution $\mod 1$ of the sequence $n\alpha$”, Ann. Univ. Sci. Budapest, Eötvös Sect. Math., 1 (1958), 127–134 | Zbl
[10] Taha D., “The three gap theorem, interval exchange transformations and zippered rectangles”, 2017, arXiv: 1708.04380
[11] Weiß C., “Deducing three gap theorem from rauzy-veech induction”, Revista Colombiana de Matematicas, 54 (2020), 31–37 | DOI | Zbl