A limit theorem for the logarithm of the order of a~random $A$-permutation
Diskretnaya Matematika, Tome 22 (2010) no. 1, pp. 126-149

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, a random permutation $\tau_n$ is considered which is uniformly distributed on the set of all permutations of degree $n$ whose cycle lengths lie in a fixed set $A$ (the so-called $A$-permutations). It is assumed that the set $A$ has an asymptotic density $\sigma>0$, and $|k\colon k\leq n,\ k\in A,\ m-k\in A|/n\to\sigma^2$ as $n\to\infty$ uniformly in $m\in[n,Cn]$ for an arbitrary constant $C>1$. The minimum degree of a permutation such that it becomes equal to the identity permutation is called the order of permutation. Let $Z_n$ be the order of a random permutation $\tau_n$. In this article, it is shown that the random variable $\ln Z_n$ is asymptotically normal with mean $l(n)=\sum_{k\in A(n)}\ln(k)/k$ and variance $\sigma\ln^3(n)/3$, where $A(n)=\{k\colon k\in A,\ k\leq n\}$. This result generalises the well-known theorem of P. Erdős and P. Turán where the uniform distribution on the whole symmetric group of permutations $S_n$ is considered, i.e., where $A$ is equal to the set of positive integers $\mathbb N$.
@article{DM_2010_22_1_a9,
     author = {A. L. Yakymiv},
     title = {A limit theorem for the logarithm of the order of a~random $A$-permutation},
     journal = {Diskretnaya Matematika},
     pages = {126--149},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2010_22_1_a9/}
}
TY  - JOUR
AU  - A. L. Yakymiv
TI  - A limit theorem for the logarithm of the order of a~random $A$-permutation
JO  - Diskretnaya Matematika
PY  - 2010
SP  - 126
EP  - 149
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2010_22_1_a9/
LA  - ru
ID  - DM_2010_22_1_a9
ER  - 
%0 Journal Article
%A A. L. Yakymiv
%T A limit theorem for the logarithm of the order of a~random $A$-permutation
%J Diskretnaya Matematika
%D 2010
%P 126-149
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2010_22_1_a9/
%G ru
%F DM_2010_22_1_a9
A. L. Yakymiv. A limit theorem for the logarithm of the order of a~random $A$-permutation. Diskretnaya Matematika, Tome 22 (2010) no. 1, pp. 126-149. http://geodesic.mathdoc.fr/item/DM_2010_22_1_a9/