Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2010_22_1_a8, author = {V. L. Kreps}, title = {On game-theoretic characterisation of stochastic independence}, journal = {Diskretnaya Matematika}, pages = {115--125}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2010_22_1_a8/} }
V. L. Kreps. On game-theoretic characterisation of stochastic independence. Diskretnaya Matematika, Tome 22 (2010) no. 1, pp. 115-125. http://geodesic.mathdoc.fr/item/DM_2010_22_1_a8/
[1] von Neumann J., “Zur Theorie der Gesellschaftspiele”, Math. Ann., 100 (1928), 295–320 | DOI | MR | Zbl
[2] Nash J., “Non-cooperative games”, Ann. Math. II Ser., 54 (1951), 286–295 | DOI | MR | Zbl
[3] Nesh Dzh., “Beskoalitsionnye igry”, Matrichnye igry, Fizmatgiz, Moskva, 1961, 205–221
[4] Kats M., Statisticheskaya nezavisimost v teorii veroyatnostei, analize i teorii chisel, IL, Moskva, 1963
[5] Vorobev N. N., “Analiticheskaya kharakterizatsiya nezavisimosti i markovosti”, Teoriya veroyatnostei i ee primeneniya, 6:4 (1961), 422–426 | MR
[6] Kreps V., “On games with stochastically dependent strategies”, Int. J. Game Theory, 23 (1994), 57–64 | DOI | MR | Zbl
[7] Vorobev N. N., Osnovy teorii igr. Beskoalitsionnye igry, Nauka, Moskva, 1984 | MR
[8] Pecherskii S. L., Belyaeva A. A., Teoriya igr dlya ekonomistov. Vvodnyi kurs, Izd-vo Evropeiskogo universiteta, Sankt-Peterburg, 2001
[9] Kreps V., “Finite $N$-person non-cooperative games with unique equilibrium points”, Int. J. Game Theory, 10:3–4 (1981), 125–129 | DOI | MR | Zbl
[10] Kreps V., “Bimatrix games with unique equilibrium points”, Int. J. Game Theory, 3:2 (1974), 115–118 | DOI | MR | Zbl