On game-theoretic characterisation of stochastic independence
Diskretnaya Matematika, Tome 22 (2010) no. 1, pp. 115-125.

Voir la notice de l'article provenant de la source Math-Net.Ru

Dropping the assumption of the stochastic independence of players' randomised choices in non-cooperative games, we introduce the notion of a type of dependence. It is proved that the stochastic independence is the unique type of dependence for which any finite non-cooperative game has a Nash equilibrium in mixed strategies.
@article{DM_2010_22_1_a8,
     author = {V. L. Kreps},
     title = {On game-theoretic characterisation of stochastic independence},
     journal = {Diskretnaya Matematika},
     pages = {115--125},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2010_22_1_a8/}
}
TY  - JOUR
AU  - V. L. Kreps
TI  - On game-theoretic characterisation of stochastic independence
JO  - Diskretnaya Matematika
PY  - 2010
SP  - 115
EP  - 125
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2010_22_1_a8/
LA  - ru
ID  - DM_2010_22_1_a8
ER  - 
%0 Journal Article
%A V. L. Kreps
%T On game-theoretic characterisation of stochastic independence
%J Diskretnaya Matematika
%D 2010
%P 115-125
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2010_22_1_a8/
%G ru
%F DM_2010_22_1_a8
V. L. Kreps. On game-theoretic characterisation of stochastic independence. Diskretnaya Matematika, Tome 22 (2010) no. 1, pp. 115-125. http://geodesic.mathdoc.fr/item/DM_2010_22_1_a8/

[1] von Neumann J., “Zur Theorie der Gesellschaftspiele”, Math. Ann., 100 (1928), 295–320 | DOI | MR | Zbl

[2] Nash J., “Non-cooperative games”, Ann. Math. II Ser., 54 (1951), 286–295 | DOI | MR | Zbl

[3] Nesh Dzh., “Beskoalitsionnye igry”, Matrichnye igry, Fizmatgiz, Moskva, 1961, 205–221

[4] Kats M., Statisticheskaya nezavisimost v teorii veroyatnostei, analize i teorii chisel, IL, Moskva, 1963

[5] Vorobev N. N., “Analiticheskaya kharakterizatsiya nezavisimosti i markovosti”, Teoriya veroyatnostei i ee primeneniya, 6:4 (1961), 422–426 | MR

[6] Kreps V., “On games with stochastically dependent strategies”, Int. J. Game Theory, 23 (1994), 57–64 | DOI | MR | Zbl

[7] Vorobev N. N., Osnovy teorii igr. Beskoalitsionnye igry, Nauka, Moskva, 1984 | MR

[8] Pecherskii S. L., Belyaeva A. A., Teoriya igr dlya ekonomistov. Vvodnyi kurs, Izd-vo Evropeiskogo universiteta, Sankt-Peterburg, 2001

[9] Kreps V., “Finite $N$-person non-cooperative games with unique equilibrium points”, Int. J. Game Theory, 10:3–4 (1981), 125–129 | DOI | MR | Zbl

[10] Kreps V., “Bimatrix games with unique equilibrium points”, Int. J. Game Theory, 3:2 (1974), 115–118 | DOI | MR | Zbl