On the finite near-rings generated by endomorphisms of an extra-special 2-group
Diskretnaya Matematika, Tome 22 (2010) no. 1, pp. 104-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the near-rings generated by endomorphisms of some extra-special 2-groups. The most essential difference of a near-ring from a usual ring is the absence of the second distributivity. In this paper, we prove that the near-ring $E(G)$ generated by endomorphisms of an extra-special 2-group $G$ of order $2^{2n+1}$ has the order which divides $2^{2^{2n}+4n^2}$ and that the near-ring $E(G)$ of the extra-special 2-group $G$ of type $-$ of order $2^{2n+1}$ has the order divided by $2^{2^{2n}+4n^2-2}$. In this case, for $n=1$ and $n=2$ the upper bound is attainable: the near-ring $E(G)$ of the group $D_8$ has the order $2^8$, and the near-ring $E(G)$ of an extra-special 2-group $D_8\ast Q_8$ has the order $2^{32}$.
@article{DM_2010_22_1_a7,
     author = {E. S. Garipova and L. S. Kazarin},
     title = {On the finite near-rings generated by endomorphisms of an extra-special 2-group},
     journal = {Diskretnaya Matematika},
     pages = {104--114},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2010_22_1_a7/}
}
TY  - JOUR
AU  - E. S. Garipova
AU  - L. S. Kazarin
TI  - On the finite near-rings generated by endomorphisms of an extra-special 2-group
JO  - Diskretnaya Matematika
PY  - 2010
SP  - 104
EP  - 114
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2010_22_1_a7/
LA  - ru
ID  - DM_2010_22_1_a7
ER  - 
%0 Journal Article
%A E. S. Garipova
%A L. S. Kazarin
%T On the finite near-rings generated by endomorphisms of an extra-special 2-group
%J Diskretnaya Matematika
%D 2010
%P 104-114
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2010_22_1_a7/
%G ru
%F DM_2010_22_1_a7
E. S. Garipova; L. S. Kazarin. On the finite near-rings generated by endomorphisms of an extra-special 2-group. Diskretnaya Matematika, Tome 22 (2010) no. 1, pp. 104-114. http://geodesic.mathdoc.fr/item/DM_2010_22_1_a7/

[1] Pilz G., Near-rings. The theory and its applications, North-Holland, Amsterdam, 1983 | MR | Zbl

[2] Meldrum J. D. P., Near-rings and their links with groups, Pitman, London, 1985 | MR | Zbl

[3] Lidl R., Pilz G., Applied abstract algebra, Springer, New York, 1984 | MR | Zbl

[4] Lidl R., Pilts G., Prikladnaya abstraktnaya algebra, Izd-vo Uralskogo universiteta, Ekaterinburg, 1996

[5] Sidelnikov V. M., “Ob odnoi konechnoi matrichnoi gruppe i kodakh na evklidovoi sfere”, Problemy peredachi informatsii, 33:1 (1997), 35–54 | MR | Zbl

[6] Sidelnikov V. M., “Kvantovye kody i abelevy podgruppy ekstraspetsialnoi gruppy”, Problemy peredachi informatsii, 38:3 (2002), 34–44 | MR | Zbl

[7] Gorenstein D., Finite simple groups. An introduction to their classification, Plenum, New York, 1982 | MR | Zbl

[8] Malone J. J., “Generalised quaternion groups and distributively generated near-rings”, Proc. Edinb. Math. Soc. II Ser., 18 (1973), 235–238 | MR | Zbl

[9] Dedonne Zh., Geometriya klassicheskikh grupp, Mir, Moskva, 1974 | MR

[10] Suprunenko D. A., Gruppy matrits, Nauka, Moskva, 1972 | MR | Zbl