The number of components in a random bipartite graph
Diskretnaya Matematika, Tome 7 (1995) no. 4, pp. 86-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a bipartite graph $G(n_1,n_2,T)$ with $n_1$ vertices in the first part and $n_2$ vertices in the second one. This graph is obtained by $T$ independent trials, each of them consists of drawing an edge which joins two vertices chosen independently of each other from distinct parts. Let $n_1\ge n_2$, $\alpha=n_2/n_1$, $n=n_1+n_2$. We prove that if $n\to\infty$ and $(1+\alpha)T=n\ln n+xn+o(n)$, where $x$ is a fixed number, then, with probability tending to one, the graph $G(n_1,n_2,T)$ contains one giant connected component and isolated vertices whose number is distributed by the Poisson law.
@article{DM_1995_7_4_a7,
     author = {A. I. Saltykov},
     title = {The number of components in a random bipartite graph},
     journal = {Diskretnaya Matematika},
     pages = {86--94},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1995_7_4_a7/}
}
TY  - JOUR
AU  - A. I. Saltykov
TI  - The number of components in a random bipartite graph
JO  - Diskretnaya Matematika
PY  - 1995
SP  - 86
EP  - 94
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1995_7_4_a7/
LA  - ru
ID  - DM_1995_7_4_a7
ER  - 
%0 Journal Article
%A A. I. Saltykov
%T The number of components in a random bipartite graph
%J Diskretnaya Matematika
%D 1995
%P 86-94
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1995_7_4_a7/
%G ru
%F DM_1995_7_4_a7
A. I. Saltykov. The number of components in a random bipartite graph. Diskretnaya Matematika, Tome 7 (1995) no. 4, pp. 86-94. http://geodesic.mathdoc.fr/item/DM_1995_7_4_a7/