On weighted inductive limits of non-Archimedean spaces of continuous functions
Bollettino della Unione matematica italiana, Série 8, 3B (2000) no. 3, pp. 757-774.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Si studiano alcune proprietà di un certo limite induttivo di spazi non-archimedei di funzioni continue. In particolare, si esamina la completezza di questo limite induttivo e si indaga il problema di quando lo spazio coincide con il proprio inviluppo proiettivo.
@article{BUMI_2000_8_3B_3_a13,
     author = {Katsaras, A. K. and Benekas, V.},
     title = {On weighted inductive limits of {non-Archimedean} spaces of continuous functions},
     journal = {Bollettino della Unione matematica italiana},
     pages = {757--774},
     publisher = {mathdoc},
     volume = {Ser. 8, 3B},
     number = {3},
     year = {2000},
     zbl = {0972.46045},
     mrnumber = {1016004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_3_a13/}
}
TY  - JOUR
AU  - Katsaras, A. K.
AU  - Benekas, V.
TI  - On weighted inductive limits of non-Archimedean spaces of continuous functions
JO  - Bollettino della Unione matematica italiana
PY  - 2000
SP  - 757
EP  - 774
VL  - 3B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_3_a13/
LA  - en
ID  - BUMI_2000_8_3B_3_a13
ER  - 
%0 Journal Article
%A Katsaras, A. K.
%A Benekas, V.
%T On weighted inductive limits of non-Archimedean spaces of continuous functions
%J Bollettino della Unione matematica italiana
%D 2000
%P 757-774
%V 3B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_3_a13/
%G en
%F BUMI_2000_8_3B_3_a13
Katsaras, A. K.; Benekas, V. On weighted inductive limits of non-Archimedean spaces of continuous functions. Bollettino della Unione matematica italiana, Série 8, 3B (2000) no. 3, pp. 757-774. http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_3_a13/

[1] F. Bastin, On bornological $C\overline{V}(X)$ spaces, Arch. Math., 53 (1989), 394-398. | MR | Zbl

[2] F. Bastin, Weighted spaces of continuous functions, Bull. Soc. Roy. Sc. Liège, 1 (1990), 1-81. | MR | Zbl

[3] F. Bastin-B. Ernst, A criterion for $CV(X)$ to be quasinormable, Results in Math., 14 (1988), 223-230. | MR | Zbl

[4] K. D. Bierstedt, The approximation property for weighted function spaces, Bonner Math. Schriften, 81 (1975), 3-25. | MR | Zbl

[5] K. D. Bierstedt, Tensor products of weighted spaces, Bonner Math. Schriften, 81 (1975), 26-58. | MR | Zbl

[6] K. D. Bierstedt-J. Bonet, Stefan Heinrich's density condition for Fréchet spaces and the characterization of the distinguished Köthe echelon spaces, Math. Nach., 135 (1988), 149-180. | MR | Zbl

[7] K. D. Bierstedt-J. Bonet, Dual density conditions in (DF)-spaces I, Results in Math., 14 (1988), 242-274. | MR | Zbl

[8] K. D. Bierstedt-J. Bonet, Dual density conditions in (DF)-spaces, Bull. Soc. Roy. Sc. Liège, 57 (1988), 567-589. | MR | Zbl

[9] K. D. Bierstedt-J. Bonet, Some results on $VC(X)$, pp. 181-194 in: T. Terzioglu (Ed.), Advances in the theory of Fréchet spaces, Kluwer Academic Publishers, 1989. | MR | Zbl

[10] K. D. Bierstedt-J. Bonet, Completeness of the (LB)-space $VC(X)$, Arch. Math. (Basel), 56 (1991), 281-288. | MR | Zbl

[11] K. D. Bierstedt-R. Meise, Distinguished echelon spaces and the projective description of weighted inductive limits of type $V_{d}C(X)$, pp. 169-226 in: Aspects in Mathematics and its Applications, Elsevier Science Publ. B. V., North-Holland Math. Library, 1986. | MR | Zbl

[12] K. D. Bierstedt-R. Meise-W. H. Summers, A projective description of weighted inductive limits, Trans. Amer. Math. Soc., 272 (1982), 107-160. | MR | Zbl

[13] K. D. Bierstedt-R. Meise-W. H. Summers, Köthe sets and Köthe sequence spaces, pp. 27-91 in: Functional Analysis, Holomorphy and Approximation Theory, North-Holland Math. Studies, 71, 1982. | MR | Zbl

[14] J. Bonet, A projective description of weighted inductive limits of spaces of vector valued continuous functions, Collectanea Math., 34 (1983), 115-125. | MR | Zbl

[15] J. Bonet, On weighted inductive limits of spaces of continuous functions, Math. Z., 192 (1986), 9-20. | MR | Zbl

[16] J. P. Q. Carneiro, Non-Archimedean weighted approximation (in Portuguese), An. Acad. Bras. Ci., 50 (1) (1978), 1-34. | MR | Zbl

[17] J. P. Q. Carneiro, Non-Archimedean weighted approximation, pp. 121-131 in: Approximation Theory and Functional Analysis (J. B. Prolla, editor), North-Holland Publ. Co. (Amsterdam), 1979. | MR | Zbl

[18] N. De Grande-De Kimpe-J. Kąkol-C. Perez-Garcia-W. H. Schikhof, $p$-adic locally convex inductive limits, pp. 159-222 in: $p$p-adic Functional Analysis, Marcel Dekker, Inc., Lecture Notes in Pure and Applied Mathematics, 192, 1997. | MR | Zbl

[19] B. Ernst, On the uniqueness of weighted (DF)-topologies, Bull. Soc. Roy. Sc. de Liège, 5-6 (1987), 451-461. | MR | Zbl

[20] B. Ernst-P. Schettler, On weighted spaces with a fundamental sequence of bounded sets, Arch. Math., 47 (1986), 552-559. | MR | Zbl

[21] A. K. Katsaras-A. Beloyiannis, Non-Archimedean weighted spaces of continuous functions, Rendiconti di Mat. Serie VII, vol. 16 (1996), 545-562. | MR | Zbl

[22] A. K. Katsaras-A. Beloyiannis, On non-Archimedean weighted spaces of continuous functions, pp. 237-252 in: $p$p-adic Functional Analysis, Lecture Notes in Pure and Applied Mathematics 192, Marcel Dekker, 1997. | MR | Zbl

[23] A. K. Katsaras-A. Beloyiannis, Tensor products of non-Archimedean weighted spaces of continuous functions, Georgian J. Math., Vol. 6, No 1 (1999), 33-44. | MR | Zbl

[24] L. Nachbin, Elements of Approximation Theory, Van Nostrand Math. Studies, 14, 1967. | MR | Zbl

[25] J. B. Prolla, Weighted spaces of vector-valued continuous functions, Ann. Mat. Pura Appl. (4) 89 (1971), 145-158. | MR | Zbl

[26] W. H. Schikhof, Locally convex spaces over non-spherically complete valued fields I, II, Bul. Soc. Math. Belg., serie B XXXVIII (1986), 187-224. | MR | Zbl

[27] A. C. M. Van Rooij, Non-Archimedean Functional Analysis, New York and Basel, Marcel Dekker, Inc., 1978. | MR | Zbl