Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2000_8_3B_3_a13, author = {Katsaras, A. K. and Benekas, V.}, title = {On weighted inductive limits of {non-Archimedean} spaces of continuous functions}, journal = {Bollettino della Unione matematica italiana}, pages = {757--774}, publisher = {mathdoc}, volume = {Ser. 8, 3B}, number = {3}, year = {2000}, zbl = {0972.46045}, mrnumber = {1016004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_3_a13/} }
TY - JOUR AU - Katsaras, A. K. AU - Benekas, V. TI - On weighted inductive limits of non-Archimedean spaces of continuous functions JO - Bollettino della Unione matematica italiana PY - 2000 SP - 757 EP - 774 VL - 3B IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_3_a13/ LA - en ID - BUMI_2000_8_3B_3_a13 ER -
%0 Journal Article %A Katsaras, A. K. %A Benekas, V. %T On weighted inductive limits of non-Archimedean spaces of continuous functions %J Bollettino della Unione matematica italiana %D 2000 %P 757-774 %V 3B %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_3_a13/ %G en %F BUMI_2000_8_3B_3_a13
Katsaras, A. K.; Benekas, V. On weighted inductive limits of non-Archimedean spaces of continuous functions. Bollettino della Unione matematica italiana, Série 8, 3B (2000) no. 3, pp. 757-774. http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_3_a13/
[1] On bornological $C\overline{V}(X)$ spaces, Arch. Math., 53 (1989), 394-398. | MR | Zbl
,[2] Weighted spaces of continuous functions, Bull. Soc. Roy. Sc. Liège, 1 (1990), 1-81. | MR | Zbl
,[3] A criterion for $CV(X)$ to be quasinormable, Results in Math., 14 (1988), 223-230. | MR | Zbl
- ,[4] The approximation property for weighted function spaces, Bonner Math. Schriften, 81 (1975), 3-25. | MR | Zbl
,[5] Tensor products of weighted spaces, Bonner Math. Schriften, 81 (1975), 26-58. | MR | Zbl
,[6] Stefan Heinrich's density condition for Fréchet spaces and the characterization of the distinguished Köthe echelon spaces, Math. Nach., 135 (1988), 149-180. | MR | Zbl
- ,[7] Dual density conditions in (DF)-spaces I, Results in Math., 14 (1988), 242-274. | MR | Zbl
- ,[8] Dual density conditions in (DF)-spaces, Bull. Soc. Roy. Sc. Liège, 57 (1988), 567-589. | MR | Zbl
- ,[9] Some results on $VC(X)$, pp. 181-194 in: T. Terzioglu (Ed.), Advances in the theory of Fréchet spaces, Kluwer Academic Publishers, 1989. | MR | Zbl
- ,[10] Completeness of the (LB)-space $VC(X)$, Arch. Math. (Basel), 56 (1991), 281-288. | MR | Zbl
- ,[11] Distinguished echelon spaces and the projective description of weighted inductive limits of type $V_{d}C(X)$, pp. 169-226 in: Aspects in Mathematics and its Applications, Elsevier Science Publ. B. V., North-Holland Math. Library, 1986. | MR | Zbl
- ,[12] A projective description of weighted inductive limits, Trans. Amer. Math. Soc., 272 (1982), 107-160. | MR | Zbl
- - ,[13] Köthe sets and Köthe sequence spaces, pp. 27-91 in: Functional Analysis, Holomorphy and Approximation Theory, North-Holland Math. Studies, 71, 1982. | MR | Zbl
- - ,[14] A projective description of weighted inductive limits of spaces of vector valued continuous functions, Collectanea Math., 34 (1983), 115-125. | MR | Zbl
,[15] On weighted inductive limits of spaces of continuous functions, Math. Z., 192 (1986), 9-20. | MR | Zbl
,[16] Non-Archimedean weighted approximation (in Portuguese), An. Acad. Bras. Ci., 50 (1) (1978), 1-34. | MR | Zbl
,[17] Non-Archimedean weighted approximation, pp. 121-131 in: Approximation Theory and Functional Analysis (J. B. Prolla, editor), North-Holland Publ. Co. (Amsterdam), 1979. | MR | Zbl
,[18] $p$-adic locally convex inductive limits, pp. 159-222 in: $p$p-adic Functional Analysis, Marcel Dekker, Inc., Lecture Notes in Pure and Applied Mathematics, 192, 1997. | MR | Zbl
- - - ,[19] On the uniqueness of weighted (DF)-topologies, Bull. Soc. Roy. Sc. de Liège, 5-6 (1987), 451-461. | MR | Zbl
,[20] On weighted spaces with a fundamental sequence of bounded sets, Arch. Math., 47 (1986), 552-559. | MR | Zbl
- ,[21] Non-Archimedean weighted spaces of continuous functions, Rendiconti di Mat. Serie VII, vol. 16 (1996), 545-562. | MR | Zbl
- ,[22] On non-Archimedean weighted spaces of continuous functions, pp. 237-252 in: $p$p-adic Functional Analysis, Lecture Notes in Pure and Applied Mathematics 192, Marcel Dekker, 1997. | MR | Zbl
- ,[23] Tensor products of non-Archimedean weighted spaces of continuous functions, Georgian J. Math., Vol. 6, No 1 (1999), 33-44. | MR | Zbl
- ,[24] Elements of Approximation Theory, Van Nostrand Math. Studies, 14, 1967. | MR | Zbl
,[25] Weighted spaces of vector-valued continuous functions, Ann. Mat. Pura Appl. (4) 89 (1971), 145-158. | MR | Zbl
,[26] Locally convex spaces over non-spherically complete valued fields I, II, Bul. Soc. Math. Belg., serie B XXXVIII (1986), 187-224. | MR | Zbl
,[27] Non-Archimedean Functional Analysis, New York and Basel, Marcel Dekker, Inc., 1978. | MR | Zbl
,