Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_1998_8_1B_3_a3, author = {Bolotin, S. V. and Rabinowitz, P. H.}, title = {A variational construction of chaotic trajectories for a {Hamiltonian} system on a torus}, journal = {Bollettino della Unione matematica italiana}, pages = {541--570}, publisher = {mathdoc}, volume = {Ser. 8, 1B}, number = {3}, year = {1998}, zbl = {0957.70020}, mrnumber = {719634}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_1998_8_1B_3_a3/} }
TY - JOUR AU - Bolotin, S. V. AU - Rabinowitz, P. H. TI - A variational construction of chaotic trajectories for a Hamiltonian system on a torus JO - Bollettino della Unione matematica italiana PY - 1998 SP - 541 EP - 570 VL - 1B IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_1998_8_1B_3_a3/ LA - en ID - BUMI_1998_8_1B_3_a3 ER -
%0 Journal Article %A Bolotin, S. V. %A Rabinowitz, P. H. %T A variational construction of chaotic trajectories for a Hamiltonian system on a torus %J Bollettino della Unione matematica italiana %D 1998 %P 541-570 %V 1B %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_1998_8_1B_3_a3/ %G en %F BUMI_1998_8_1B_3_a3
Bolotin, S. V.; Rabinowitz, P. H. A variational construction of chaotic trajectories for a Hamiltonian system on a torus. Bollettino della Unione matematica italiana, Série 8, 1B (1998) no. 3, pp. 541-570. http://geodesic.mathdoc.fr/item/BUMI_1998_8_1B_3_a3/
[1] Ordinary differential equations, Encyclopedia of Mathematical Sciences, Vol. 1, Springer-Verlag, 1989.
- - ,[2] Mathematical aspects of classical and celestial mechanics, Encyclopedia of Mathematical Sciences, Vol. 3, Springer-Verlag (1989). | Zbl
- - ,[3] The discrete Frenkel-Kontorova model and its extensions, I. Exact results for the ground-states, Physica D, 8 (1983), 381-422. | MR
- ,[4] Dynamical Systems, Amer. Math. Soc. Colloq. Publ., IX, New York, 1927.
,[5] Libration motions of natural dynamical systems, Vestnik Moskov. Univ. Ser. I Matem. Mekhan., 6 (1978), 72-77. | MR | Zbl
,[6] Libration Motions of Reversible Hamiltonian Systems, Moscow State University, 1981.
,[7] The existence of homoclinic motions, Vestnik Moskov. Univ. Matem. Mekh., 6 (1983), 98-103. | MR | Zbl
,[8] Homoclinic orbits to invariant tori of Hamiltonian systems, Amer. Math. Soc. Transl., Ser. 2, 168 (1995), 21-90. | MR | Zbl
,[9] Libration in systems with many degrees of freedom, J. Appl. Math. Mech. (PMM), 42 (1978), 245-250. | MR | Zbl
- ,[10] Variational methods for constructing chaotic motions in the rigid body dynamics, Prikl. Matem. i Mekhan., 56 (1992), 230-239. | MR | Zbl
,[11] Variational criteria for nonintegrability and chaos in Hamiltonian systems, in: Hamiltonian Systems: Integrability and Chaotic Behavior, NATO ASI Series, 331, Plenum Press (1994), 173-179. | MR | Zbl
,[12] Variational criteria for nonintegrability, Russian J. Math. Phys., No 1, 1998. | Zbl
- ,[13] A global condition for quasi-random behavior in a class of conservative systems, Comm. Pure Appl. Math. (1996). | MR | Zbl
- ,[14] Nonexistence of an additional integral of the problem of a planar heavy double pendulum, Prikl. Matem. i Mekhan., 50 (1986), 168-171. | MR | Zbl
,[15] Homoclinics and heteroclinics for a class of conservative singular dynamical systems, Preprint, 1996. | Zbl
- ,[16] Pseudo-holomorphic curves and multiplicity of homoclinic orbits, Duke Math. J. (1996). | fulltext mini-dml | Zbl
- ,[17] Homoclinic orbits for second order Hamiltonian systems posessing superquadratic potentials, J. Amer. Math. Soc., 4 (1991), 693-727. | MR | Zbl
- ,[18] The Shilnikov problem, exponential expansion, strong $\lambda$-lemma, $C^1$-linearization and homoclinic bifurcation, J. Differ. Equat., 79 (1989), 189-231. | MR | Zbl
,[19] Homoclinic orbits in Hamiltonian systems, J. Differ. Equat. 21 (1976), 431-438. | MR | Zbl
,[20] Transversal homoclinic orbits in an integrable system, Amer. J. Math., 100 (1978), 631-642. | MR | Zbl
,[21] On the multiplicity of homoclinic orbits on Riemannian manifolds for a class of second order Hamiltonian systems, NoDEA, 1 (1993), 1-49. | MR | Zbl
- ,[22] Geodesics on a two-dimensional Riemannian manifold with periodic coefficients, Ann. Math., 33 (1932), 719-739. | MR
,[23] Multitransition homoclinic and heteroclinic solutions of the extended Fisher-Kolmogorov equation, Preprint, 1995. | MR | Zbl
- ,[24] Homotopy classes for stable connections between Hamiltonian saddle-focus equilibria, Preprint, 1996. | MR | Zbl
- - ,[25] Entropy and closed geodesics, Ergod. Theor. Dynam. Syst., 2 (1982), 339-367. | MR | Zbl
,[26] Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, Cambridge University Press (1995). | MR | Zbl
- ,[27] Topological obstructions to the integrability of natural mechanical systems, Dokl. Akad. Nauk. SSSR, 249 (1979), 1299-1302. | MR | Zbl
,[28] Integrability and nonintegrability in classical mechanics, Uspekhi Mat. Nauk, 38 (1983), 3-67. | MR | Zbl
,[29] Calculus of variations in large and classical mechanics, Uspekhi Matem. Nauk, 40 (1985), 33-60. | MR | Zbl
,[30] Topology of domains of possible motion for integrable systems, Matem. Sbornik, 187 (1996), 59-64. | MR | Zbl
- ,[31] A fundamental class of geodesics in any closed surface of genus greater than one, Trans. Amer. Math. Soc., 26 (1924), 25-61. | MR
,[32] Variational construction of connecting orbits, Ann. Inst. Fourier, 43 (1993), 1349-1386. | fulltext mini-dml | MR | Zbl
,[33] Geometric Theory of Dynamical Systems, Springer-Verlag, 1982. | MR | Zbl
- ,[34] Homoclinics for a singular Hamiltonian system, to appear in Geometric Analysis and the Calculus of Variations (J. Jost, ed.), International Press (1996), 267-296. | MR | Zbl
,[35] Heteroclinics for a Hamiltonian system of double pendulum type, to appear in Top. Methods in Nonlin. Analysis, Vol. 9 (1997), 41-76. | MR | Zbl
,[36] Existence of infinitely many homoclinics in Hamiltonian systems, Math. Z., 209 (1992), 27-42. | MR | Zbl
,[37] Looking for the Bernoulli shift, Ann. Inst. H. Poincaré, Anal. Nonlin., 10 (1993), 561-590. | fulltext mini-dml | MR | Zbl
,[38] On a Poincaré-Birkhoff problem, Math. USSR Sbornik, 3 (1967), 353-371.
,[39] On Hamiltonian systems with homoclinic curves of a saddle, Dokl. Akad. Nauk SSSR, 304 (1989), 811-814. | MR | Zbl
- ,