A variational construction of chaotic trajectories for a Hamiltonian system on a torus
Bollettino della Unione matematica italiana, Série 8, 1B (1998) no. 3, pp. 541-570.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

A geometric criterion for the existence of chaotic trajectories of a Hamiltonian system with two degrees of freedom and the configuration space a torus is given. As an application, positive topological entropy is established for a double pendulum problem.
@article{BUMI_1998_8_1B_3_a3,
     author = {Bolotin, S. V. and Rabinowitz, P. H.},
     title = {A variational construction of chaotic trajectories for a {Hamiltonian} system on a torus},
     journal = {Bollettino della Unione matematica italiana},
     pages = {541--570},
     publisher = {mathdoc},
     volume = {Ser. 8, 1B},
     number = {3},
     year = {1998},
     zbl = {0957.70020},
     mrnumber = {719634},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_1998_8_1B_3_a3/}
}
TY  - JOUR
AU  - Bolotin, S. V.
AU  - Rabinowitz, P. H.
TI  - A variational construction of chaotic trajectories for a Hamiltonian system on a torus
JO  - Bollettino della Unione matematica italiana
PY  - 1998
SP  - 541
EP  - 570
VL  - 1B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_1998_8_1B_3_a3/
LA  - en
ID  - BUMI_1998_8_1B_3_a3
ER  - 
%0 Journal Article
%A Bolotin, S. V.
%A Rabinowitz, P. H.
%T A variational construction of chaotic trajectories for a Hamiltonian system on a torus
%J Bollettino della Unione matematica italiana
%D 1998
%P 541-570
%V 1B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_1998_8_1B_3_a3/
%G en
%F BUMI_1998_8_1B_3_a3
Bolotin, S. V.; Rabinowitz, P. H. A variational construction of chaotic trajectories for a Hamiltonian system on a torus. Bollettino della Unione matematica italiana, Série 8, 1B (1998) no. 3, pp. 541-570. http://geodesic.mathdoc.fr/item/BUMI_1998_8_1B_3_a3/

[1] V. I. Arnold - Y. S. Il'Yashenko - D. V. Anosov , Ordinary differential equations, Encyclopedia of Mathematical Sciences, Vol. 1, Springer-Verlag, 1989.

[2] V. I. Arnold - V. V. Kozlov - A. I. Neishtadt , Mathematical aspects of classical and celestial mechanics, Encyclopedia of Mathematical Sciences, Vol. 3, Springer-Verlag (1989). | Zbl

[3] S. Aubry - P. Y. Ledaeron , The discrete Frenkel-Kontorova model and its extensions, I. Exact results for the ground-states, Physica D, 8 (1983), 381-422. | MR

[4] G. D. Birkhoff , Dynamical Systems, Amer. Math. Soc. Colloq. Publ., IX, New York, 1927.

[5] S. V. Bolotin , Libration motions of natural dynamical systems, Vestnik Moskov. Univ. Ser. I Matem. Mekhan., 6 (1978), 72-77. | MR | Zbl

[6] S. V. Bolotin , Libration Motions of Reversible Hamiltonian Systems, Moscow State University, 1981.

[7] S. V. Bolotin , The existence of homoclinic motions, Vestnik Moskov. Univ. Matem. Mekh., 6 (1983), 98-103. | MR | Zbl

[8] S. V. Bolotin , Homoclinic orbits to invariant tori of Hamiltonian systems, Amer. Math. Soc. Transl., Ser. 2, 168 (1995), 21-90. | MR | Zbl

[9] S. V. Bolotin - V. V. Kozlov , Libration in systems with many degrees of freedom, J. Appl. Math. Mech. (PMM), 42 (1978), 245-250. | MR | Zbl

[10] S. V. Bolotin , Variational methods for constructing chaotic motions in the rigid body dynamics, Prikl. Matem. i Mekhan., 56 (1992), 230-239. | MR | Zbl

[11] S. V. Bolotin , Variational criteria for nonintegrability and chaos in Hamiltonian systems, in: Hamiltonian Systems: Integrability and Chaotic Behavior, NATO ASI Series, 331, Plenum Press (1994), 173-179. | MR | Zbl

[12] S. V. Bolotin - P. Negrini , Variational criteria for nonintegrability, Russian J. Math. Phys., No 1, 1998. | Zbl

[13] B. Buffoni - E. Séré , A global condition for quasi-random behavior in a class of conservative systems, Comm. Pure Appl. Math. (1996). | MR | Zbl

[14] A. A. Burov , Nonexistence of an additional integral of the problem of a planar heavy double pendulum, Prikl. Matem. i Mekhan., 50 (1986), 168-171. | MR | Zbl

[15] P. Caldiroli - L. Jeanjean , Homoclinics and heteroclinics for a class of conservative singular dynamical systems, Preprint, 1996. | Zbl

[16] K. Cielebak - E. Séré , Pseudo-holomorphic curves and multiplicity of homoclinic orbits, Duke Math. J. (1996). | fulltext mini-dml | Zbl

[17] V. Coti Zelati - P. H. Rabinowitz , Homoclinic orbits for second order Hamiltonian systems posessing superquadratic potentials, J. Amer. Math. Soc., 4 (1991), 693-727. | MR | Zbl

[18] B. Deng , The Shilnikov problem, exponential expansion, strong $\lambda$-lemma, $C^1$-linearization and homoclinic bifurcation, J. Differ. Equat., 79 (1989), 189-231. | MR | Zbl

[19] R. L. Devaney , Homoclinic orbits in Hamiltonian systems, J. Differ. Equat. 21 (1976), 431-438. | MR | Zbl

[20] R. L. Devaney , Transversal homoclinic orbits in an integrable system, Amer. J. Math., 100 (1978), 631-642. | MR | Zbl

[21] F. Giannoni - P. H. Rabinowitz , On the multiplicity of homoclinic orbits on Riemannian manifolds for a class of second order Hamiltonian systems, NoDEA, 1 (1993), 1-49. | MR | Zbl

[22] G. A. Hedlund , Geodesics on a two-dimensional Riemannian manifold with periodic coefficients, Ann. Math., 33 (1932), 719-739. | MR

[23] W. D. Kalies - R. C. A. M. Vandervorst , Multitransition homoclinic and heteroclinic solutions of the extended Fisher-Kolmogorov equation, Preprint, 1995. | MR | Zbl

[24] W. D. Kalies - J. Kwapisz - R. C. A. M. Vandervorst , Homotopy classes for stable connections between Hamiltonian saddle-focus equilibria, Preprint, 1996. | MR | Zbl

[25] A. Katok , Entropy and closed geodesics, Ergod. Theor. Dynam. Syst., 2 (1982), 339-367. | MR | Zbl

[26] A. Katok - B. Hasselblatt , Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, Cambridge University Press (1995). | MR | Zbl

[27] V. V. Kozlov , Topological obstructions to the integrability of natural mechanical systems, Dokl. Akad. Nauk. SSSR, 249 (1979), 1299-1302. | MR | Zbl

[28] V. V. Kozlov , Integrability and nonintegrability in classical mechanics, Uspekhi Mat. Nauk, 38 (1983), 3-67. | MR | Zbl

[29] V. V. Kozlov , Calculus of variations in large and classical mechanics, Uspekhi Matem. Nauk, 40 (1985), 33-60. | MR | Zbl

[30] V. V. Kozlov - V. V. Ten , Topology of domains of possible motion for integrable systems, Matem. Sbornik, 187 (1996), 59-64. | MR | Zbl

[31] M. Morse , A fundamental class of geodesics in any closed surface of genus greater than one, Trans. Amer. Math. Soc., 26 (1924), 25-61. | MR

[32] J. Mather , Variational construction of connecting orbits, Ann. Inst. Fourier, 43 (1993), 1349-1386. | fulltext mini-dml | MR | Zbl

[33] J. Palis - W. De Melo , Geometric Theory of Dynamical Systems, Springer-Verlag, 1982. | MR | Zbl

[34] P. H. Rabinowitz , Homoclinics for a singular Hamiltonian system, to appear in Geometric Analysis and the Calculus of Variations (J. Jost, ed.), International Press (1996), 267-296. | MR | Zbl

[35] P. H. Rabinowitz , Heteroclinics for a Hamiltonian system of double pendulum type, to appear in Top. Methods in Nonlin. Analysis, Vol. 9 (1997), 41-76. | MR | Zbl

[36] E. Seéré , Existence of infinitely many homoclinics in Hamiltonian systems, Math. Z., 209 (1992), 27-42. | MR | Zbl

[37] E. Séré , Looking for the Bernoulli shift, Ann. Inst. H. Poincaré, Anal. Nonlin., 10 (1993), 561-590. | fulltext mini-dml | MR | Zbl

[38] L. P. Shilnikov , On a Poincaré-Birkhoff problem, Math. USSR Sbornik, 3 (1967), 353-371.

[39] D. V. Turayev - L. P. Shilnikov , On Hamiltonian systems with homoclinic curves of a saddle, Dokl. Akad. Nauk SSSR, 304 (1989), 811-814. | MR | Zbl