Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2020_74_1_a1, author = {Mir, Abdullah and Malik, Adil Hussain}, title = {Inequalities concerning the rate of growth of polynomials involving the polar derivative}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {74}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2020_74_1_a1/} }
TY - JOUR AU - Mir, Abdullah AU - Malik, Adil Hussain TI - Inequalities concerning the rate of growth of polynomials involving the polar derivative JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2020 VL - 74 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUM_2020_74_1_a1/ LA - en ID - AUM_2020_74_1_a1 ER -
%0 Journal Article %A Mir, Abdullah %A Malik, Adil Hussain %T Inequalities concerning the rate of growth of polynomials involving the polar derivative %J Annales Universitatis Mariae Curie-Skłodowska. Mathematica %D 2020 %V 74 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/AUM_2020_74_1_a1/ %G en %F AUM_2020_74_1_a1
Mir, Abdullah; Malik, Adil Hussain. Inequalities concerning the rate of growth of polynomials involving the polar derivative. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 74 (2020) no. 1. http://geodesic.mathdoc.fr/item/AUM_2020_74_1_a1/
[1] Aziz, A., Shah, W. M., Inequalities for a polynomial and its derivative, Math. Inequal. Appl. 7 (2004), 379–391.
[2] Aziz, A., Zargar, B. A., Inequalities for a polynomial and its derivative, Math. Inequal. Appl. 1 (1998), 543–550.
[3] Bernstein, S., Sur l’ordre de la meilleure approximation des functions continues par des polynomes de degr´e donne, Mem. Acad. R. Belg. 4 (1912), 1–103.
[4] Bernstein, S., Sur la limitation des derivees des polynomes, C. R. Acad. Sci. Paris 190 (1930), 338–341.
[5] Bidkham, M., Dewan, K. K., Inequalities for a polynomial and its derivative, J. Math. Anal. Appl., 166 (1992), 319-324.
[6] Chanam, B., Dewan, K. K., Inequalities for a polynomial and its derivative, J. Math. Anal. Appl. 336 (2007), 171–179.
[7] Dewan, K. K., Singh, N., Mir, A., Extensions of some polynomial inequalities to the polar derivative, J. Math. Anal. Appl. 352 (2009), 807–815.
[8] Gardner, R. B., Govil, N. K., Musukula, S. R., Rate of growth of polynomials not vanishing inside a circle, J. Inequal. Pure Appl. Math. 6 (2), Art. 53, (2005), 1–9.
[9] Govil, N. K., Rahman, Q. I., Functions of exponential type not vanishing in a half plane and related polynomials, Trans. Amer. Math. Soc. 137 (1969), 501–517.
[10] Lax, P. D., Proof of a conjecture of P. Erd¨os on the derivative of a polynomial, Bull. Amer. Math. Soc. 50 (1944), 509–513.
[11] Malik, M. A., On the derivative of a polynomial, J. London. Math. Soc. 1 (1969), 57–60.
[12] Mir, A., Hussain, I., On the Erdos–Lax inequality concerning polynomials, C. R. Acad. Sci. Paris, Ser. I 355 (2017), 1055–1062.
[13] Mir, A., On an operator preserving inequalities between polynomials, Ukrainian Math. J. 69 (2018), 1234–1247.
[14] Mir, A., Dar, B., On the polar derivative of a polynomial, J. Ramanujan Math. Soc., 29 (2014), 403–412.
[15] Mir, A., Wani, A., Polynomials with polar derivatives, Funct. Approx. Comment. Math. 55 (2016), 139–144.
[16] Mir, A., Dar, B., Inequalities concerning the rate of growth of polynomials, Afr. Mat. 27 (2016), 279–290.
[17] Somsuwan, J., Nakprasit, K. N., Some bounds for the polar derivative of a polynomial, Int. J. Math. Math. Sci. (2018), Art. ID 5034607, 4 pp.