Inequalities concerning the rate of growth of polynomials involving the polar derivative
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 74 (2020) no. 1.

Voir la notice de l'article provenant de la source Library of Science

This paper contains some results for algebraic polynomials in the complex plane involving the polar derivative that are inspired by some classical results of Bernstein. Obtained results yield the polar derivative analogues of some inequalities giving estimates for the growth of derivative of lacunary polynomials.
Keywords: Bernstein inequality, lacunary polynomial, zeros
@article{AUM_2020_74_1_a1,
     author = {Mir, Abdullah and Malik, Adil Hussain},
     title = {Inequalities concerning the rate of growth of polynomials involving the polar derivative},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {74},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2020_74_1_a1/}
}
TY  - JOUR
AU  - Mir, Abdullah
AU  - Malik, Adil Hussain
TI  - Inequalities concerning the rate of growth of polynomials involving the polar derivative
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2020
VL  - 74
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2020_74_1_a1/
LA  - en
ID  - AUM_2020_74_1_a1
ER  - 
%0 Journal Article
%A Mir, Abdullah
%A Malik, Adil Hussain
%T Inequalities concerning the rate of growth of polynomials involving the polar derivative
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2020
%V 74
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2020_74_1_a1/
%G en
%F AUM_2020_74_1_a1
Mir, Abdullah; Malik, Adil Hussain. Inequalities concerning the rate of growth of polynomials involving the polar derivative. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 74 (2020) no. 1. http://geodesic.mathdoc.fr/item/AUM_2020_74_1_a1/

[1] Aziz, A., Shah, W. M., Inequalities for a polynomial and its derivative, Math. Inequal. Appl. 7 (2004), 379–391.

[2] Aziz, A., Zargar, B. A., Inequalities for a polynomial and its derivative, Math. Inequal. Appl. 1 (1998), 543–550.

[3] Bernstein, S., Sur l’ordre de la meilleure approximation des functions continues par des polynomes de degr´e donne, Mem. Acad. R. Belg. 4 (1912), 1–103.

[4] Bernstein, S., Sur la limitation des derivees des polynomes, C. R. Acad. Sci. Paris 190 (1930), 338–341.

[5] Bidkham, M., Dewan, K. K., Inequalities for a polynomial and its derivative, J. Math. Anal. Appl., 166 (1992), 319-324.

[6] Chanam, B., Dewan, K. K., Inequalities for a polynomial and its derivative, J. Math. Anal. Appl. 336 (2007), 171–179.

[7] Dewan, K. K., Singh, N., Mir, A., Extensions of some polynomial inequalities to the polar derivative, J. Math. Anal. Appl. 352 (2009), 807–815.

[8] Gardner, R. B., Govil, N. K., Musukula, S. R., Rate of growth of polynomials not vanishing inside a circle, J. Inequal. Pure Appl. Math. 6 (2), Art. 53, (2005), 1–9.

[9] Govil, N. K., Rahman, Q. I., Functions of exponential type not vanishing in a half plane and related polynomials, Trans. Amer. Math. Soc. 137 (1969), 501–517.

[10] Lax, P. D., Proof of a conjecture of P. Erd¨os on the derivative of a polynomial, Bull. Amer. Math. Soc. 50 (1944), 509–513.

[11] Malik, M. A., On the derivative of a polynomial, J. London. Math. Soc. 1 (1969), 57–60.

[12] Mir, A., Hussain, I., On the Erdos–Lax inequality concerning polynomials, C. R. Acad. Sci. Paris, Ser. I 355 (2017), 1055–1062.

[13] Mir, A., On an operator preserving inequalities between polynomials, Ukrainian Math. J. 69 (2018), 1234–1247.

[14] Mir, A., Dar, B., On the polar derivative of a polynomial, J. Ramanujan Math. Soc., 29 (2014), 403–412.

[15] Mir, A., Wani, A., Polynomials with polar derivatives, Funct. Approx. Comment. Math. 55 (2016), 139–144.

[16] Mir, A., Dar, B., Inequalities concerning the rate of growth of polynomials, Afr. Mat. 27 (2016), 279–290.

[17] Somsuwan, J., Nakprasit, K. N., Some bounds for the polar derivative of a polynomial, Int. J. Math. Math. Sci. (2018), Art. ID 5034607, 4 pp.