Voir la notice de l'article provenant de la source Numdam
We prove that bounded solutions to an overdetermined fully nonlinear free boundary problem in the plane are one dimensional. Our proof relies on maximum principle techniques and convexity arguments.
De Silva, Daniela 1 ; Valdinoci, Enrico 2
@article{ASNSP_2010_5_9_1_111_0, author = {De Silva, Daniela and Valdinoci, Enrico}, title = {A fully nonlinear problem with free boundary in the plane}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {111--132}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 9}, number = {1}, year = {2010}, mrnumber = {2668875}, zbl = {1196.35232}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ASNSP_2010_5_9_1_111_0/} }
TY - JOUR AU - De Silva, Daniela AU - Valdinoci, Enrico TI - A fully nonlinear problem with free boundary in the plane JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2010 SP - 111 EP - 132 VL - 9 IS - 1 PB - Scuola Normale Superiore, Pisa UR - http://geodesic.mathdoc.fr/item/ASNSP_2010_5_9_1_111_0/ LA - en ID - ASNSP_2010_5_9_1_111_0 ER -
%0 Journal Article %A De Silva, Daniela %A Valdinoci, Enrico %T A fully nonlinear problem with free boundary in the plane %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2010 %P 111-132 %V 9 %N 1 %I Scuola Normale Superiore, Pisa %U http://geodesic.mathdoc.fr/item/ASNSP_2010_5_9_1_111_0/ %G en %F ASNSP_2010_5_9_1_111_0
De Silva, Daniela; Valdinoci, Enrico. A fully nonlinear problem with free boundary in the plane. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 9 (2010) no. 1, pp. 111-132. http://geodesic.mathdoc.fr/item/ASNSP_2010_5_9_1_111_0/
[1] Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math. 325 (1981), 105–144. | MR | EuDML | Zbl
and ,[2] “Fully Nonlinear Elliptic Equations”, Vol. 43 of American Mathematical Society Colloquium Publications, American Mathematical Society, Providence, RI, 1995. | MR
and ,[3] “A Geometric Approach to Free Boundary Problems”, GSM 68, American Mathematical Society, Providence, Rhode Island, 2005. | MR | Zbl
and ,[4] Symmetry of global solutions to a class of fully nonlinear elliptic equations in 2D, Indiana Univ. Math. J. 58 (2009), 301–315. | MR | Zbl
and ,[5] On a Liouville type theorem for isotropic homogeneous fully nonlinear elliptic equations in dimension two, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 2 (2003), 181–197. | MR | EuDML | Zbl | mathdoc-id
and ,[6] Flattening results for elliptic PDEs in unbounded domains with applications to overdetermined problems, Arch. Ration. Mech. Anal. 195 (2010), 1025–1058. | MR | Zbl
and ,[7] “Phase Transitions: Regularity of Flat Level Sets”, PhD thesis, University of Texas at Austin, 2003. | MR
,[8] Entire solutions to a class of fully nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 3 (2008), 369–405. | MR | EuDML | Zbl | mathdoc-id
,[9] Regularity of flat sets in phase transitions, Ann. of Math. 169 (2009), 41–78. | MR | Zbl
,[10] Bernoulli jets and the zero mean curvature equation, J. Differential Equations 225 (2006), 710–736. | MR | Zbl
,[11] Flatness of Bernoulli jets, Math. Z. 254 (2006), 257–298. | MR | Zbl
,