A fully nonlinear problem with free boundary in the plane
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 9 (2010) no. 1, pp. 111-132.

Voir la notice de l'article provenant de la source Numdam

We prove that bounded solutions to an overdetermined fully nonlinear free boundary problem in the plane are one dimensional. Our proof relies on maximum principle techniques and convexity arguments.

Classification : 35J60, 35N25, 35B06

De Silva, Daniela 1 ; Valdinoci, Enrico 2

1 Department of Mathematics, Barnard College, Columbia University, NY 10027, New York
2 Dipartimento di Matematica, II Università di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Roma, Italia
@article{ASNSP_2010_5_9_1_111_0,
     author = {De Silva, Daniela and Valdinoci, Enrico},
     title = {A fully nonlinear problem with free boundary in the plane},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {111--132},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 9},
     number = {1},
     year = {2010},
     mrnumber = {2668875},
     zbl = {1196.35232},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ASNSP_2010_5_9_1_111_0/}
}
TY  - JOUR
AU  - De Silva, Daniela
AU  - Valdinoci, Enrico
TI  - A fully nonlinear problem with free boundary in the plane
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2010
SP  - 111
EP  - 132
VL  - 9
IS  - 1
PB  - Scuola Normale Superiore, Pisa
UR  - http://geodesic.mathdoc.fr/item/ASNSP_2010_5_9_1_111_0/
LA  - en
ID  - ASNSP_2010_5_9_1_111_0
ER  - 
%0 Journal Article
%A De Silva, Daniela
%A Valdinoci, Enrico
%T A fully nonlinear problem with free boundary in the plane
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2010
%P 111-132
%V 9
%N 1
%I Scuola Normale Superiore, Pisa
%U http://geodesic.mathdoc.fr/item/ASNSP_2010_5_9_1_111_0/
%G en
%F ASNSP_2010_5_9_1_111_0
De Silva, Daniela; Valdinoci, Enrico. A fully nonlinear problem with free boundary in the plane. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 9 (2010) no. 1, pp. 111-132. http://geodesic.mathdoc.fr/item/ASNSP_2010_5_9_1_111_0/

[1] H. W. Alt and L. A. Caffarelli, Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math. 325 (1981), 105–144. | MR | EuDML | Zbl

[2] L. A. Caffarelli and X. Cabré, “Fully Nonlinear Elliptic Equations”, Vol. 43 of American Mathematical Society Colloquium Publications, American Mathematical Society, Providence, RI, 1995. | MR

[3] L. A. Caffarelli and S. Salsa, “A Geometric Approach to Free Boundary Problems”, GSM 68, American Mathematical Society, Providence, Rhode Island, 2005. | MR | Zbl

[4] D. De Silva and O. Savin, Symmetry of global solutions to a class of fully nonlinear elliptic equations in 2D, Indiana Univ. Math. J. 58 (2009), 301–315. | MR | Zbl

[5] J. Dolbeault and R. Monneau, On a Liouville type theorem for isotropic homogeneous fully nonlinear elliptic equations in dimension two, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 2 (2003), 181–197. | MR | EuDML | Zbl | mathdoc-id

[6] A. Farina and E. Valdinoci, Flattening results for elliptic PDEs in unbounded domains with applications to overdetermined problems, Arch. Ration. Mech. Anal. 195 (2010), 1025–1058. | MR | Zbl

[7] O. Savin, “Phase Transitions: Regularity of Flat Level Sets”, PhD thesis, University of Texas at Austin, 2003. | MR

[8] O. Savin, Entire solutions to a class of fully nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 3 (2008), 369–405. | MR | EuDML | Zbl | mathdoc-id

[9] O. Savin, Regularity of flat sets in phase transitions, Ann. of Math. 169 (2009), 41–78. | MR | Zbl

[10] E. Valdinoci, Bernoulli jets and the zero mean curvature equation, J. Differential Equations 225 (2006), 710–736. | MR | Zbl

[11] E. Valdinoci, Flatness of Bernoulli jets, Math. Z. 254 (2006), 257–298. | MR | Zbl