A convergent nonlinear splitting via orthogonal projection
Applications of Mathematics, Tome 29 (1984) no. 4, pp. 250-257
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We study the convergence of the iterations in a Hilbert space $V,x_{k+1}=W(P)x_k, W(P)z=w=T(Pw+(I-P)z)$, where $T$ maps $V$ into itself and $P$ is a linear projection operator. The iterations converge to the unique fixed point of $T$, if the operator $W(P)$ is continuous and the Lipschitz constant $\left\|(I-P)W(P)\right\|1$. If an operator $W(P_1)$ satisfies these assumptions and $P_2$ is an orthogonal projection such that $P_1P_2=P_2P_1=P_1$, then the operator $W(P_2)$ is defined and continuous in $V$ and satisfies $\left\|(I-P_2)W(P_2)\right\|\leq \left\|(I-P_1)W(P_1)\right\|$.
DOI :
10.21136/AM.1984.104093
Classification :
47H10, 47H17, 47J25, 65J15
Keywords: convergent nonlinear splitting; orthogonal projection; iterations; Hilbert space; fixed point
Keywords: convergent nonlinear splitting; orthogonal projection; iterations; Hilbert space; fixed point
@article{10_21136_AM_1984_104093,
author = {Mandel, Jan},
title = {A convergent nonlinear splitting via orthogonal projection},
journal = {Applications of Mathematics},
pages = {250--257},
publisher = {mathdoc},
volume = {29},
number = {4},
year = {1984},
doi = {10.21136/AM.1984.104093},
mrnumber = {0754077},
zbl = {0613.65060},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1984.104093/}
}
TY - JOUR AU - Mandel, Jan TI - A convergent nonlinear splitting via orthogonal projection JO - Applications of Mathematics PY - 1984 SP - 250 EP - 257 VL - 29 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/AM.1984.104093/ DO - 10.21136/AM.1984.104093 LA - en ID - 10_21136_AM_1984_104093 ER -
Mandel, Jan. A convergent nonlinear splitting via orthogonal projection. Applications of Mathematics, Tome 29 (1984) no. 4, pp. 250-257. doi: 10.21136/AM.1984.104093
Cité par Sources :