Numerical analysis of the general biharmonic problem by the finite element method
Applications of Mathematics, Tome 27 (1982) no. 5, pp. 352-374

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The present paper deals with solving the general biharmonic problem by the finite element method using curved triangular finit $C^1$-elements introduced by Ženíšek. The effect of numerical integration is analysed in the case of mixed boundary conditions and sufficient conditions for the uniform $V_{Oh}$-ellipticity are found.
DOI : 10.21136/AM.1982.103982
Classification : 31A30, 35J40, 65N15, 65N30
Keywords: curved triangular finite elements; mixed boundary conditions; biharmonic problem; Bell’s elements; Error bounds
@article{10_21136_AM_1982_103982,
     author = {H\v{r}eb{\'\i}\v{c}ek, Ji\v{r}{\'\i}},
     title = {Numerical analysis of the general biharmonic problem by the finite element method},
     journal = {Applications of Mathematics},
     pages = {352--374},
     publisher = {mathdoc},
     volume = {27},
     number = {5},
     year = {1982},
     doi = {10.21136/AM.1982.103982},
     mrnumber = {0674981},
     zbl = {0541.65072},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1982.103982/}
}
TY  - JOUR
AU  - Hřebíček, Jiří
TI  - Numerical analysis of the general biharmonic problem by the finite element method
JO  - Applications of Mathematics
PY  - 1982
SP  - 352
EP  - 374
VL  - 27
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1982.103982/
DO  - 10.21136/AM.1982.103982
LA  - en
ID  - 10_21136_AM_1982_103982
ER  - 
%0 Journal Article
%A Hřebíček, Jiří
%T Numerical analysis of the general biharmonic problem by the finite element method
%J Applications of Mathematics
%D 1982
%P 352-374
%V 27
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1982.103982/
%R 10.21136/AM.1982.103982
%G en
%F 10_21136_AM_1982_103982
Hřebíček, Jiří. Numerical analysis of the general biharmonic problem by the finite element method. Applications of Mathematics, Tome 27 (1982) no. 5, pp. 352-374. doi: 10.21136/AM.1982.103982

Cité par Sources :