Real and complex transversely symplectic Anosov flows of dimension five
Séminaire de théorie spectrale et géométrie, Tome 23 (2004-2005), pp. 105-114.

Voir la notice de l'acte provenant de la source Numdam

Nous présentons plusieurs résultats de rigidité concernant les flots d’Anosov admettant transversalement des structures symplectiques réelles ou complexes de dimension 5.

We present several rigidity results about five-dimensional real or complex transversely symplectic Anosov flows.

DOI : 10.5802/tsg.232
Classification : 37D40, 53C25
@article{TSG_2004-2005__23__105_0,
     author = {Fang, Yong},
     title = {Real and complex transversely symplectic {Anosov} flows of dimension five},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     pages = {105--114},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {23},
     year = {2004-2005},
     doi = {10.5802/tsg.232},
     mrnumber = {2270224},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/tsg.232/}
}
TY  - JOUR
AU  - Fang, Yong
TI  - Real and complex transversely symplectic Anosov flows of dimension five
JO  - Séminaire de théorie spectrale et géométrie
PY  - 2004-2005
SP  - 105
EP  - 114
VL  - 23
PB  - Institut Fourier
PP  - Grenoble
UR  - http://geodesic.mathdoc.fr/articles/10.5802/tsg.232/
DO  - 10.5802/tsg.232
LA  - en
ID  - TSG_2004-2005__23__105_0
ER  - 
%0 Journal Article
%A Fang, Yong
%T Real and complex transversely symplectic Anosov flows of dimension five
%J Séminaire de théorie spectrale et géométrie
%D 2004-2005
%P 105-114
%V 23
%I Institut Fourier
%C Grenoble
%U http://geodesic.mathdoc.fr/articles/10.5802/tsg.232/
%R 10.5802/tsg.232
%G en
%F TSG_2004-2005__23__105_0
Fang, Yong. Real and complex transversely symplectic Anosov flows of dimension five. Séminaire de théorie spectrale et géométrie, Tome 23 (2004-2005), pp. 105-114. doi : 10.5802/tsg.232. http://geodesic.mathdoc.fr/articles/10.5802/tsg.232/

[B] M. Brunella, On transversely holomorphic flows I, Invent. Math., 126 (1996), 265–279. | Zbl | MR

[BFL] Y. Benoist, P. Foulon and F. Labourie, Flots d’Anosov à distributions de Liapounov différentiables. I, Ann. Inst. Henri Poincaré, 53 (1990), 395–412. | Zbl | mathdoc-id

[BFL1] Y. Benoist, P. Foulon and F. Labourie, Flots d’Anosov à distributions stable et instable différentiables, J. Amer. Math. Soc., 5 (1992), 33–74. | Zbl

[CIPP] G. Contreras, R. Iturriaga, G. P. Paternain and M. Paternain, Lagrangian graphs, minimizing measures and Mané’s critical values, GAFA, 8 (1998) 788–809. | Zbl

[D] S. Dumitrescu, Métriques riemanniennes holomorphesen petite dimension, Ann. Inst. Fourier, 51, 6 (2001), 1663–1690. | Zbl | MR | mathdoc-id

[F] Y. Fang, Structures géométriques rigides et systèmes dynamiques hyperboliques, ph.D. thesis, University of Paris-Sud. Web address: http://tel.archives-ouvertes.fr/tel-00008734/fr/

[F1] Y. Fang, Geometric Anosov flows of dimension 5 with smooth distributions, to appear in Journal of the Institute of Mathematics of Jussieu. Web address: http://hal.ccsd.cnrs.fr/ccsd-00004411 | Zbl | MR

[F2] Y. Fang, Smooth rigidity of uniformly quasiconformal Anosov flows, Ergod. Th. and Dynam. Sys, 24 (2004), 1937–1959. | Zbl | MR

[F3] Y. Fang, On orbit equivalence of quasiconformal Anosov flows, soumitted. Web address: http://hal.ccsd.cnrs.fr/ccsd-00004412

[FK] R. Feres and A. Katok, invariant tensor fields of dynamical systems with pinched Lyapunov exponents and rigidity of geodesic flows, Ergod. Th. and Dynam. Sys., 9 (1989), 427–432. | Zbl | MR

[G] É. Ghys, Flots d’Anosov dont les feuilletages stables sont différentiables, Ann. Scient. Éc. Norm. Sup. (4), 20 (1987), 251–270. | Zbl | mathdoc-id

[G1] É. Ghys, Holomorphic Anosov flows, Invent. math., 119 (1995), 585–614. | Zbl | MR

[G2] É. Ghys, On transversely holomorphic flows II, Invent. Math., 126 (1996) 281–286. | Zbl | MR

[HK] B. Hasselblatt and A. Katok, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, vol 54, 1995. | Zbl | MR

[HuK] S. Hurder and A. Katok, Differentiability, rigidity and Godbillon-Vey classes for Anosov flows, Pub. I.H.É.S., 72 (1990), 5–61. | Zbl | MR | mathdoc-id

[IKO] M. Inoue, S. Kobayashi and T. Ochiai, Holomorphic affine connections on compact complex surfaces, J. Fac. Sci. Univ. Tokyo, 27(2) (1980), 247-264. | Zbl | MR

[K] M. Kanai, Geodesic flows of negatively curved manifolds with smooth stable and instable foliations, Ergod. Th. and Dynam. Sys., 8 (1988), 215–240. | Zbl | MR

[S] V. Sadovskaya, On uniformly quasiconformal Anosov systems, nto appear in Math. Res. Lett. | Zbl | MR

Cité par Sources :