Sur le comportement des solutions d’équations de Schrödinger non linéaires à croissance exponentielle
Séminaire Laurent Schwartz — EDP et applications (2014-2015), Exposé no. 10, 11 p.

Voir la notice de l'acte provenant de la source Numdam

On se propose dans cet exposé de décrire le comportement des solutions de l’équation de Schrödinger non linéaire à croissance exponentielle, où la norme d’Orlicz joue un rôle crucial. Notre analyse qui est basée sur les décompositions en profils met en lumière le rôle distingué de la composante 1-oscillante de la suite des données initiales. Ce phénomène est complètement différent de ceux obtenus dans le cadre des équations semi-linéaires dispersives critiques, où toutes les composantes oscillantes créent le même effet non linéaire, à un changement d’échelle près.

DOI : 10.5802/slsedp.69

Bahouri, Hajer 1

1 Laboratoire d’Analyse et de Mathématiques Appliquées UMR 8050 Université Paris-Est Créteil 61, avenue du Général de Gaulle 94010 Créteil Cedex, France
@article{SLSEDP_2014-2015____A10_0,
     author = {Bahouri, Hajer},
     title = {Sur le comportement des solutions d{\textquoteright}\'equations de {Schr\"odinger} non lin\'eaires \`a croissance exponentielle},
     journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications},
     note = {talk:10},
     pages = {1--11},
     publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2014-2015},
     doi = {10.5802/slsedp.69},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/slsedp.69/}
}
TY  - JOUR
AU  - Bahouri, Hajer
TI  - Sur le comportement des solutions d’équations de Schrödinger non linéaires à croissance exponentielle
JO  - Séminaire Laurent Schwartz — EDP et applications
N1  - talk:10
PY  - 2014-2015
SP  - 1
EP  - 11
PB  - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - http://geodesic.mathdoc.fr/articles/10.5802/slsedp.69/
DO  - 10.5802/slsedp.69
LA  - fr
ID  - SLSEDP_2014-2015____A10_0
ER  - 
%0 Journal Article
%A Bahouri, Hajer
%T Sur le comportement des solutions d’équations de Schrödinger non linéaires à croissance exponentielle
%J Séminaire Laurent Schwartz — EDP et applications
%Z talk:10
%D 2014-2015
%P 1-11
%I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
%U http://geodesic.mathdoc.fr/articles/10.5802/slsedp.69/
%R 10.5802/slsedp.69
%G fr
%F SLSEDP_2014-2015____A10_0
Bahouri, Hajer. Sur le comportement des solutions d’équations de Schrödinger non linéaires à croissance exponentielle. Séminaire Laurent Schwartz — EDP et applications (2014-2015), Exposé no. 10, 11 p. doi : 10.5802/slsedp.69. http://geodesic.mathdoc.fr/articles/10.5802/slsedp.69/

[1] S. Adachi and K. Tanaka, Trudinger type inequalities in N and their best exponents, Proceedings in American Mathematical Society, 128 (2000), 2051-2057. | Zbl | MR

[2] Adimurthi and O. Druet, Blow-up analysis in dimension 2 and a sharp form of Trudinger-Moser inequality, Communications in Partial Differential Equations, 29 (2004), 295–322. | Zbl | MR

[3] H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, Springer, (2011). | Zbl | MR

[4] H. Bahouri and P. Gérard, High frequency approximation of solutions to critical nonlinear wave equations, American Journal of Math, 121 (1999), 131-175. | Zbl | MR

[5] H. Bahouri, M. Majdoub and N. Masmoudi, On the lack of compactness in the 2D critical Sobolev embedding, Journal of Functional Analysis, 260 (2011), 208-252. | Zbl | MR

[6] H. Bahouri, M. Majdoub and N. Masmoudi, Lack of compactness in the 2D critical Sobolev embedding, the general case, Journal de Mathématiques Pures et Appliquées, 101 (2014), 415-457. | MR

[7] H. Bahouri, On the elements involved in the lack of compactness in critical Sobolev embedding, Concentration Analysis and Applications to PDE, Trends in Mathematics, (2013), 1-15. | Zbl

[8] H. Bahouri, S. Ibrahim and G. Perelman, Scattering for the critical 2-D NLS with exponential growth, Journal of Differential and Integral Equations, 27 (2014), 233-268. | MR

[9] H. Bahouri and G. Perelman, A Fourier approach to the profile decomposition in Orlicz spaces, Mathematical Research Letters, 21 (2014), 33-54. | MR

[10] H. Bahouri and I. Gallagher, On the stability in weak topology of the set of global solutions to the Navier-Stokes equations, Archive for Rational Mechanics and Analysis, 209 (2013), 569-629. | Zbl | MR

[11] H. Bahouri, J.-Y. Chemin and I. Gallagher, Stability by rescaled weak convergence for the Navier-Stokes equations, Notes aux Comptes-Rendus de l’Académie des Sciences de Paris, Ser. I 352 (2014), 305-310. | Zbl | MR

[12] H. Bahouri, J.-Y. Chemin and I. Gallagher, Stability by rescaled weak convergence for the Navier-Stokes equations, . | arXiv | MR

[13] I. Ben Ayed and M. K. Zghal, Characterization of the lack of compactness of H rad 2 ( 4 ) into the Orlicz space, Communications in Contemporary Mathematics, 16 (2014), 1-25. | MR

[14] L. Berlyand, P. Mironescu, V. Rybalko and E. Sandier, Minimax critical points in Ginzburg-Landau problems with semi-stiff boundary conditions : existence and bubbling, Communications in Partial Differential Equations, 39 (2014), 946-1005. | Zbl | MR

[15] H. Brézis and J.-M. Coron, Convergence of solutions of H-Systems or how to blow bubbles, Archive for Rational Mechanics and Analysis, 89 (1985), 21-86. | Zbl | MR

[16] J. Bourgain, A remark on Schrödinger operators, Israel Journal of Mathematics, 77 (1992), 1-16. | Zbl | MR

[17] J. Bourgain, Some new estimates on oscillatoryon integrals, Essays on Fourier Analysis in Honor of Elias M. Stein, Princeton Math, 42 (1995), 83-112. | Zbl | MR

[18] T. Cazenave, Equations de Schrödinger non linéaires en dimension deux, Proceedings of the Royal Society of Edinburgh. Section A, 84 (1979), 327-346. | Zbl | MR

[19] J. Colliander, S. Ibrahim, M. Majdoub and N. Masmoudi, Energy critical NLS in two space dimension, Journal of Hyperbolic Differential Equations, 6 (2009), 549-575. | Zbl | MR

[20] R. Côte, C. Kenig, A. Lawrie, W. Schlag, Characterization of large energy solutions of the equivariant wave map problem : I . | arXiv

[21] R. Côte, C. Kenig, A. Lawrie, W. Schlag, Characterization of large energy solutions of the equivariant wave map problem : II . | arXiv

[22] O. Druet, Multibumps analysis in dimension 2 - Quantification of blow up levels, Duke Math. Journal, 132 (2006), 217-269. | Zbl | MR

[23] I. Gallagher, G. Koch and F. Planchon, A profile decomposition approach to the L t (L x 3 ) Navier-Stokes regularity criterion, Mathematische Annalen, 355 (2013), 1527-1559. | Zbl | MR

[24] P. Gérard, Description du défaut de compacité de l’injection de Sobolev, ESAIM Contrôle Optimal et Calcul des Variations, 3 (1998), 213-233. | Zbl | mathdoc-id

[25] P. Gérard, Oscillations and concentration effects in semilinear dispersive wave equations, Journal of Functional Analysis, 133 (1996), 50–68. | Zbl

[26] A. Henrot and M. Pierre, Variations et optimistation de formes, Mathématiques et applications, Springer, 48, (2005). | Zbl | MR

[27] S. Ibrahim, M. Majdoub, N. Masmoudi and K. Nakanishi, Scattering for the two dimensional NLS with exponential nonlinearity, Nonlinearity, 25 (2012), 1843-1849. | Zbl | MR

[28] S. Ibrahim, M. Majdoub and N. Masmoudi, Double logarithmic inequality with a sharp constant, Proceedings of the American Mathematical Society, 135 (2007), 87–97. | Zbl | MR

[29] C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy critical focusing non-linear wave equation, Acta Mathematica, 201 (2008), 147-212. | Zbl | MR

[30] S. Keraani, On the defect of compactness for the Strichartz estimates of the Schrödinger equation, Journal of Differential equations, 175 (2001), 353-392. | Zbl | MR

[31] J. F. Lam, B. Lippman, and F. Tappert, Self trapped laser beams in plasma, Physics of Fluids, 20 (1977), 1176-1179.

[32] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I., Revista Matematica Iberoamericana 1(1) (1985), 145-201. | Zbl | MR

[33] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. II., Revista Matematica Iberoamericana 1(2) (1985), 45-121. | Zbl | MR

[34] G. Mancini, K. Sandeep, and C.Tintarev, Trudinger-Moser inequality in the hyperbolic space N , Advances in Nonlinear Analysis 2 (2013), 309-324. | Zbl | MR

[35] F. Merle and L. Vega, Compactness at Blow-up Time for L2 Solutions of the Critical Nonlinear Schrödinger Equation in 2D, International Mathematics Research Notices, 8 (1998), 399-425. | Zbl | MR

[36] J. Moser, A sharp form of an inequality of N. Trudinger, Indiana University Mathematics Journal, 20 (1971), 1077-1092. | Zbl | MR

[37] A. Moyua, A. Vargas and L. Vega, Restriction theorems and maximal operators related to oscillatory integrals in 3 , Duke Mathematical Journal, 96 (1999), 1-28. | Zbl | MR

[38] M.-M. Rao and Z.-D. Ren, Applications of Orlicz spaces, Monographs and Textbooks in Pure and Applied Mathematics, 250 (2002), Marcel Dekker Inc. | Zbl | MR

[39] B. Ruf and F. Sani, Sharp Adams-type inequalities in n , Transactions of the American Mathematical Society, 2 (2013), 645-670. | Zbl | MR

[40] B. Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in 2 , Journal of Functional Analysis, 219 (2005), 340-367. | Zbl | MR

[41] I. Schindler and K. Tintarev, An abstract version of the concentration compactness principle, Revista Mathematica Complutense, 15 (2002), 417-436. | Zbl | MR

[42] M. Struwe, A global compactness result for boundary value problems involving limiting nonlinearities, Mathematische Zeitschrift, 187 (1984), 511-517. | Zbl | MR

[43] N.S. Trudinger, On imbedding into Orlicz spaces and some applications, Journal of Mathematics and Mechanics, 17 (1967), 473-484. | Zbl | MR

Cité par Sources :