Stable soliton resolution for equivariant wave maps exterior to a ball
Séminaire Laurent Schwartz — EDP et applications (2014-2015), Exposé no. 3, 11 p.

Voir la notice de l'acte provenant de la source Numdam

In this report we review the proof of the stable soliton resolution conjecture for equivariant wave maps exterior to a ball in 3 and taking values in the 3-sphere. This is joint work with Carlos Kenig, Baoping Liu, and Wilhelm Schlag.

DOI : 10.5802/slsedp.66

Lawrie, Andrew 1

1 Department of Mathematics The University of California, Berkeley 970 Evans Hall #3840 Berkeley, CA 94720 U.S.A.
@article{SLSEDP_2014-2015____A3_0,
     author = {Lawrie, Andrew},
     title = {Stable soliton resolution for equivariant wave maps exterior to a ball},
     journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications},
     note = {talk:3},
     pages = {1--11},
     publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2014-2015},
     doi = {10.5802/slsedp.66},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/slsedp.66/}
}
TY  - JOUR
AU  - Lawrie, Andrew
TI  - Stable soliton resolution for equivariant wave maps exterior to a ball
JO  - Séminaire Laurent Schwartz — EDP et applications
N1  - talk:3
PY  - 2014-2015
SP  - 1
EP  - 11
PB  - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - http://geodesic.mathdoc.fr/articles/10.5802/slsedp.66/
DO  - 10.5802/slsedp.66
LA  - en
ID  - SLSEDP_2014-2015____A3_0
ER  - 
%0 Journal Article
%A Lawrie, Andrew
%T Stable soliton resolution for equivariant wave maps exterior to a ball
%J Séminaire Laurent Schwartz — EDP et applications
%Z talk:3
%D 2014-2015
%P 1-11
%I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
%U http://geodesic.mathdoc.fr/articles/10.5802/slsedp.66/
%R 10.5802/slsedp.66
%G en
%F SLSEDP_2014-2015____A3_0
Lawrie, Andrew. Stable soliton resolution for equivariant wave maps exterior to a ball. Séminaire Laurent Schwartz — EDP et applications (2014-2015), Exposé no. 3, 11 p. doi : 10.5802/slsedp.66. http://geodesic.mathdoc.fr/articles/10.5802/slsedp.66/

[1] H. Bahouri and P. Gérard. High frequency approximation of solutions to critical nonlinear wave equations. Amer. J. Math., 121:131–175, 1999. | Zbl | MR

[2] B. Balakrishna, V. Schechter Sanyuk, J., and A. Subbaraman. Cutoff quantization and the skyrmion. Physical Review D, 45(1):344–351, 1992.

[3] P. Bizoń, T. Chmaj, and M. Maliborski. Equivariant wave maps exterior to a ball. Nonlinearity, 25(5):1299–1309, 2012. | Zbl | MR

[4] T. Duyckaerts, C. Kenig, and F. Merle. Universality of the blow-up profile for small radial type II blow-up solutions of the energy critical wave equation. J. Eur math. Soc. (JEMS), 13(3):533–599, 2011. | Zbl | MR

[5] T. Duyckaerts, C. Kenig, and F. Merle. Profiles of bounded radial solutions of the focusing, energy-critical wave equation. Geom. Funct. Anal., 22(3):639–698, 2012. | Zbl | MR

[6] T. Duyckaerts, C. Kenig, and F. Merle. Universality of the blow-up profile for small type II blow-up solutions of the energy-critical wave equation: the nonradial case. J. Eur. Math. Soc. (JEMS), 14(5):1389–1454, 2012. | Zbl | MR

[7] T. Duyckaerts, C. Kenig, and F. Merle. Classification of radial solutions of the focusing, energy critical wave equation. Cambridge Journal of Mathematics, 1(1):75–144, 2013. | MR

[8] T. Duyckaerts, C. Kenig, and F. Merle. Scattering for radial, bounded solutions of focusing supercritical wave equations. To appear in I.M.R.N, Preprint, 2012. | MR

[9] K. Hidano, J. Metcalfe, H. Smith, C. Sogge, and Y. Zhou. On abstract Strichartz estimates and the Strauss conjecture for nontrapping obstacles. Trans. Amer. Math. Soc., 362(5):2789–2809, 2010. | Zbl | MR

[10] C. Kenig, A. Lawrie, B. Liu, and W. Schlag. Channels of energy for the linear radial wave equation. Preprint, 2014.

[11] C. Kenig, A. Lawrie, B. Liu, and W. Schlag. Stable soliton resolution for exterior wave maps in all equivariance classes. Preprint, 2014.

[12] C. Kenig, A. Lawrie, and W. Schlag. Relaxation of wave maps exterior to a ball to harmonic maps for all data. Geom. Funct. Anal., 24(2):610–647, 2014. | Zbl | MR

[13] C. Kenig and F. Merle. Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case. Invent. Math., 166(3):645–675, 2006. | Zbl | MR

[14] C. Kenig and F. Merle. Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation. Acta Math., 201(2):147–212, 2008. | Zbl | MR

[15] A. Lawrie and W. Schlag. Scattering for wave maps exterior to a ball. Advances in Mathematics, 232(1):57–97, 2013. | Zbl | MR

[16] J. Shatah. Weak solutions and development of singularities of the SU (2) σ-model. Comm. Pure Appl. Math., 41(4):459–469, 1988. | Zbl | MR

[17] J. Shatah and M. Struwe. Geometric wave equations. Courant Lecture notes in Mathematics, New York University, Courant Institute of Mathematical Sciences, New York. American Mathematical Society, Providence RI, 1998. | Zbl | MR

Cité par Sources :