Voir la notice de l'acte provenant de la source Numdam
This paper reports on the recent proof of the bounded curvature conjecture. More precisely we show that the time of existence of a classical solution to the Einstein-vacuum equations depends only on the -norm of the curvature and a lower bound of the volume radius of the corresponding initial data set.
Klainerman, Sergiu 1 ; Rodnianski, Igor 1 ; Szeftel, Jérémie 2
@article{SLSEDP_2014-2015____A1_0, author = {Klainerman, Sergiu and Rodnianski, Igor and Szeftel, J\'er\'emie}, title = {The resolution of the bounded $L^2$ curvature conjecture in general relativity}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:1}, pages = {1--18}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2014-2015}, doi = {10.5802/slsedp.65}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/slsedp.65/} }
TY - JOUR AU - Klainerman, Sergiu AU - Rodnianski, Igor AU - Szeftel, Jérémie TI - The resolution of the bounded $L^2$ curvature conjecture in general relativity JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:1 PY - 2014-2015 SP - 1 EP - 18 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://geodesic.mathdoc.fr/articles/10.5802/slsedp.65/ DO - 10.5802/slsedp.65 LA - en ID - SLSEDP_2014-2015____A1_0 ER -
%0 Journal Article %A Klainerman, Sergiu %A Rodnianski, Igor %A Szeftel, Jérémie %T The resolution of the bounded $L^2$ curvature conjecture in general relativity %J Séminaire Laurent Schwartz — EDP et applications %Z talk:1 %D 2014-2015 %P 1-18 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U http://geodesic.mathdoc.fr/articles/10.5802/slsedp.65/ %R 10.5802/slsedp.65 %G en %F SLSEDP_2014-2015____A1_0
Klainerman, Sergiu; Rodnianski, Igor; Szeftel, Jérémie. The resolution of the bounded $L^2$ curvature conjecture in general relativity. Séminaire Laurent Schwartz — EDP et applications (2014-2015), Exposé no. 1, 18 p. doi : 10.5802/slsedp.65. http://geodesic.mathdoc.fr/articles/10.5802/slsedp.65/
[1] H. Bahouri, J.-Y. Chemin, Équations d’ondes quasilinéaires et estimation de Strichartz, Amer. J. Math., 121, 1337–1777, 1999. | Zbl | MR
[2] H. Bahouri, J.-Y. Chemin, Équations d’ondes quasilinéaires et effet dispersif, IMRN, 21, 1141–1178, 1999. | Zbl | MR
[3] Y. C. Bruhat, Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires, Acta Math. 88, 141–225, 1952. | Zbl | MR
[4] E. Cartan, Sur une généralisation de la notion de courbure de Riemann et les espaces à torsion, C. R. Acad. Sci. (Paris), 174, 593–595, 1922.
[5] D. Christodoulou, Bounded variation solutions of the spherically symmetric Einstein-scalar field equations, Comm. Pure and Appl. Math, 46, 1131–1220, 1993. | Zbl | MR
[6] D. Christodoulou, The instability of naked singularities in the gravitational collapse of a scalar field, Ann. of Math., 149, 183–217,1999. | Zbl | MR | EuDML
[7] A. Fischer, J. Marsden, The Einstein evolution equations as a first-order quasi-linear symmetric hyperbolic system. I, Comm. Math. Phys. 28, 1–38, 1972. | Zbl | MR
[8] T. J. R. Hughes, T. Kato, J. E. Marsden, Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity, Arch. Rational Mech. Anal. 63, 273–394, 1977. | Zbl | MR
[9] S. Klainerman, M. Machedon, Space-time estimates for null forms and the local existence theorem, Communications on Pure and Applied Mathematics, 46, 1221–1268, 1993. | Zbl | MR
[10] S. Klainerman, M. Machedon, Finite energy solutions of the Maxwell-Klein-Gordon equations, Duke Math. J. 74, 19–44, 1994. | Zbl | MR
[11] S. Klainerman, M. Machedon, Finite Energy Solutions for the Yang-Mills Equations in , Annals of Math. 142, 39–119, 1995. | Zbl | MR
[12] S. Klainerman, PDE as a unified subject, Proceeding of Visions in Mathematics, GAFA 2000 (Tel Aviv 1999). Geom Funct. Anal. 2000, Special Volume , Part 1, 279–315. | Zbl | MR
[13] S. Klainerman, I. Rodnianski, Improved local well-posedness for quasi-linear wave equations in dimension three, Duke Math. J. 117 (1), 1–124, 2003. | Zbl | MR
[14] S. Klainerman, I. Rodnianski, Rough solutions to the Einstein vacuum equations, Annals of Math. 161, 1143–1193, 2005. | Zbl | MR
[15] S. Klainerman, I. Rodnianski, Bilinear estimates on curved space-times, J. Hyperbolic Differ. Equ. 2 (2), 279–291, 2005. | Zbl | MR
[16] S. Klainerman, I. Rodnianski, Casual geometry of Einstein vacuum space-times with finite curvature flux, Inventiones 159, 437–529, 2005. | Zbl | MR
[17] S. Klainerman, I. Rodnianski, Sharp trace theorems on null hypersurfaces, GAFA 16 (1), 164–229, 2006. | Zbl | MR
[18] S. Klainerman, I. Rodnianski, A geometric version of Littlewood-Paley theory, GAFA 16 (1), 126–163, 2006. | Zbl | MR
[19] S. Klainerman, I. Rodnianski, On a break-down criterion in General Relativity, J. Amer. Math. Soc. 23, 345–382, 2010. | Zbl | MR
[20] S. Klainerman, I. Rodnianski, J. Szeftel, The Bounded Curvature Conjecture, , 91 p, 2012. | arXiv
[21] J. Krieger, W. Schlag, Concentration compactness for critical wave maps, Monographs of the European Mathematical Society, 2012. | MR
[22] H. Lindblad, Counterexamples to local existence for quasilinear wave equations, Amer. J. Math. 118 (1), 1–16, 1996. | Zbl | MR
[23] H. Lindblad, I. Rodnianski, The weak null condition for the Einstein vacuum equations, C. R. Acad. Sci. 336, 901–906, 2003. | Zbl | MR
[24] D. Parlongue, An integral breakdown criterion for Einstein vacuum equations in the case of asymptotically flat spacetimes, eprint1004.4309, 88 p, 2010.
[25] F. Planchon, I. Rodnianski, Uniqueness in general relativity, preprint.
[26] G. Ponce, T. Sideris, Local regularity of nonlinear wave equations in three space dimensions, Comm. PDE 17, 169–177, 1993. | Zbl | MR
[27] H. F. Smith, A parametrix construction for wave equations with coefficients, Ann. Inst. Fourier (Grenoble) 48, 797–835, 1998. | Zbl | MR | mathdoc-id
[28] H.F. Smith, D. Tataru, Sharp local well-posedness results for the nonlinear wave equation, Ann. of Math. 162, 291–366, 2005. | Zbl | MR
[29] S. Sobolev, Méthodes nouvelles pour résoudre le problème de Cauchy pour les équations linéaires hyperboliques normales, Matematicheskii Sbornik, 1 (43), 31–79, 1936. | Zbl
[30] E. Stein, Harmonic Analysis, Princeton University Press, 1993. | Zbl | MR
[31] J. Sterbenz, D. Tataru, Regularity of Wave-Maps in dimension , Comm. Math. Phys. 298 (1), 231–264, 2010. | Zbl | MR
[32] J. Sterbenz, D. Tataru, Energy dispersed large data wave maps in dimensions, Comm. Math. Phys. 298 (1), 139–230, 2010. | Zbl | MR
[33] J. Szeftel, Parametrix for wave equations on a rough background I: Regularity of the phase at initial time, , 145 p, 2012. | arXiv
[34] J. Szeftel, Parametrix for wave equations on a rough background II: Construction of the parametrix and control at initial time, , 84 p, 2012. | arXiv
[35] J. Szeftel, Parametrix for wave equations on a rough background III: Space-time regularity of the phase, , 276 p, 2012. | arXiv
[36] J. Szeftel, Parametrix for wave equations on a rough background IV: Control of the error term, , 284 p, 2012. | arXiv
[37] J. Szeftel, Sharp Strichartz estimates for the wave equation on a rough background, , 30 p, 2013. | arXiv
[38] T. Tao, Global regularity of wave maps I–VII, preprints.
[39] D. Tataru, Local and global results for Wave Maps I, Comm. PDE 23, 1781–1793, 1998. | Zbl | MR
[40] D. Tataru. Strichartz estimates for operators with non smooth coefficients and the nonlinear wave equation, Amer. J. Math. 122, 349–376, 2000. | Zbl | MR
[41] D. Tataru, Strichartz estimates for second order hyperbolic operators with non smooth coefficients, J.A.M.S. 15 (2), 419–442, 2002. | Zbl | MR
[42] Q. Wang, Improved breakdown criterion for Einstein vacuum equation in CMC gauge, Comm. Pure Appl. Math. 65 (1), 21–76, 2012. | Zbl | MR
Cité par Sources :