Classifying and explaining defects with small data for the semiconductor industry
MathematicS In Action, Special issue Maths and Industry, Tome 11 (2022) no. 1, pp. 109-114.

Voir la notice de l'article provenant de la source Numdam

In this work, we present an automatic classifier of wafer defects for the semiconductor industry. Hopefully defects are rare, but this puts the classifying problem in a small data context. We propose a fast and fully reproducible approach based on decision trees. The main interest of using decision trees lies in obtaining a highly explicable classifier, which makes the origin of the defect easy to identify.

Publié le :
DOI : 10.5802/msia.20

Boulanger, Jean-François 1 ; Corset, Franck 2 ; Iutzeler, Franck 2 ; Lelong, Jérôme 2

1 Unity SC , 611 rue Aristide Bergès, Z.A. de Pré Millet, 38330, Montbonnot-Saint-Martin, France
2 Univ. Grenoble Alpes, CNRS, Grenoble INP, LJK, 38000 Grenoble, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{MSIA_2022__11_1_109_0,
     author = {Boulanger, Jean-Fran\c{c}ois and Corset, Franck and Iutzeler, Franck and Lelong, J\'er\^ome},
     title = {Classifying and explaining defects with small data for the semiconductor industry},
     journal = {MathematicS In Action},
     pages = {109--114},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {11},
     number = {1},
     year = {2022},
     doi = {10.5802/msia.20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/msia.20/}
}
TY  - JOUR
AU  - Boulanger, Jean-François
AU  - Corset, Franck
AU  - Iutzeler, Franck
AU  - Lelong, Jérôme
TI  - Classifying and explaining defects with small data for the semiconductor industry
JO  - MathematicS In Action
PY  - 2022
SP  - 109
EP  - 114
VL  - 11
IS  - 1
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - http://geodesic.mathdoc.fr/articles/10.5802/msia.20/
DO  - 10.5802/msia.20
LA  - en
ID  - MSIA_2022__11_1_109_0
ER  - 
%0 Journal Article
%A Boulanger, Jean-François
%A Corset, Franck
%A Iutzeler, Franck
%A Lelong, Jérôme
%T Classifying and explaining defects with small data for the semiconductor industry
%J MathematicS In Action
%D 2022
%P 109-114
%V 11
%N 1
%I Société de Mathématiques Appliquées et Industrielles
%U http://geodesic.mathdoc.fr/articles/10.5802/msia.20/
%R 10.5802/msia.20
%G en
%F MSIA_2022__11_1_109_0
Boulanger, Jean-François; Corset, Franck; Iutzeler, Franck; Lelong, Jérôme. Classifying and explaining defects with small data for the semiconductor industry. MathematicS In Action, Special issue Maths and Industry, Tome 11 (2022) no. 1, pp. 109-114. doi : 10.5802/msia.20. http://geodesic.mathdoc.fr/articles/10.5802/msia.20/

[1] Breiman, Leo; Friedman, Jerome; Olshen, Richard A.; Stone, Charles J. Classification and regression trees, Routledge, 2017 | DOI

[2] Györfi, László; Kohler, Michael; Krzyżak, Adam; Walk, Harro A distribution-free theory of nonparametric regression, 1, Springer, 2002 | DOI

[3] Hastie, Trevor; Tibshirani, Robert; Friedman, Jerome The elements of statistical learning: data mining, inference, and prediction, Springer, 2009 | DOI

[4] Pedregosa, Fabian; Varoquaux, Gaël; Gramfort, Alexandre; Michel, Vincent; Thirion, Bertrand; Grisel, Olivier; Blondel, Mathieu; Prettenhofer, Peter; Weiss, Ron; Dubourg, Vincent et al. Scikit-learn: Machine learning in Python, J. Mach. Learn. Res., Volume 12 (2011), pp. 2825-2830 | Zbl | MR

Cité par Sources :