Voir la notice de l'article provenant de la source Numdam
In this work, we present an automatic classifier of wafer defects for the semiconductor industry. Hopefully defects are rare, but this puts the classifying problem in a small data context. We propose a fast and fully reproducible approach based on decision trees. The main interest of using decision trees lies in obtaining a highly explicable classifier, which makes the origin of the defect easy to identify.
Boulanger, Jean-François 1 ; Corset, Franck 2 ; Iutzeler, Franck 2 ; Lelong, Jérôme 2
@article{MSIA_2022__11_1_109_0, author = {Boulanger, Jean-Fran\c{c}ois and Corset, Franck and Iutzeler, Franck and Lelong, J\'er\^ome}, title = {Classifying and explaining defects with small data for the semiconductor industry}, journal = {MathematicS In Action}, pages = {109--114}, publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles}, volume = {11}, number = {1}, year = {2022}, doi = {10.5802/msia.20}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/msia.20/} }
TY - JOUR AU - Boulanger, Jean-François AU - Corset, Franck AU - Iutzeler, Franck AU - Lelong, Jérôme TI - Classifying and explaining defects with small data for the semiconductor industry JO - MathematicS In Action PY - 2022 SP - 109 EP - 114 VL - 11 IS - 1 PB - Société de Mathématiques Appliquées et Industrielles UR - http://geodesic.mathdoc.fr/articles/10.5802/msia.20/ DO - 10.5802/msia.20 LA - en ID - MSIA_2022__11_1_109_0 ER -
%0 Journal Article %A Boulanger, Jean-François %A Corset, Franck %A Iutzeler, Franck %A Lelong, Jérôme %T Classifying and explaining defects with small data for the semiconductor industry %J MathematicS In Action %D 2022 %P 109-114 %V 11 %N 1 %I Société de Mathématiques Appliquées et Industrielles %U http://geodesic.mathdoc.fr/articles/10.5802/msia.20/ %R 10.5802/msia.20 %G en %F MSIA_2022__11_1_109_0
Boulanger, Jean-François; Corset, Franck; Iutzeler, Franck; Lelong, Jérôme. Classifying and explaining defects with small data for the semiconductor industry. MathematicS In Action, Special issue Maths and Industry, Tome 11 (2022) no. 1, pp. 109-114. doi : 10.5802/msia.20. http://geodesic.mathdoc.fr/articles/10.5802/msia.20/
[1] Classification and regression trees, Routledge, 2017 | DOI
[2] A distribution-free theory of nonparametric regression, 1, Springer, 2002 | DOI
[3] The elements of statistical learning: data mining, inference, and prediction, Springer, 2009 | DOI
[4] et al. Scikit-learn: Machine learning in Python, J. Mach. Learn. Res., Volume 12 (2011), pp. 2825-2830 | Zbl | MR
Cité par Sources :