Uniqueness of entire functions and fixed points
Annales Polonici Mathematici, Tome 97 (2010) no. 1, pp. 87-100.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $f$ and $g$ be entire functions, $n,$ $k$ and $m$ be positive integers, and $\lambda $, $\mu $ be complex numbers with $|\lambda |+|\mu | \not =0$. We prove that $(f^{n}(z)(\lambda f^{m}(z)+\mu ))^{(k)}$ must have infinitely many fixed points if $n \geq k +2$; furthermore, if $ (f^{n}(z)(\lambda f^{m}(z)+\mu ))^{(k)}$ and $(g^{n}(z)(\lambda g^{m}(z)+\mu ))^{(k)}$ have the same fixed points with the same multiplicities, then either $f\equiv cg$ for a constant $c$, or $f$ and $g$ assume certain forms provided that $n>2k+m^{*}+4,$ where $m^*$ is an integer that depends only on $\lambda .$
DOI : 10.4064/ap97-1-7
Keywords: entire functions positive integers lambda complex numbers lambda prove lambda have infinitely many fixed points geq furthermore lambda lambda have fixed points multiplicities either equiv constant assume certain forms provided * where * integer depends only lambda

Xiao-Guang Qi 1 ; Lian-Zhong Yang 1

1 School of Mathematics Shandong University Jinan, Shandong, 250100, P.R. China
@article{10_4064_ap97_1_7,
     author = {Xiao-Guang Qi and Lian-Zhong Yang},
     title = {Uniqueness of entire functions and fixed points},
     journal = {Annales Polonici Mathematici},
     pages = {87--100},
     publisher = {mathdoc},
     volume = {97},
     number = {1},
     year = {2010},
     doi = {10.4064/ap97-1-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap97-1-7/}
}
TY  - JOUR
AU  - Xiao-Guang Qi
AU  - Lian-Zhong Yang
TI  - Uniqueness of entire functions and fixed points
JO  - Annales Polonici Mathematici
PY  - 2010
SP  - 87
EP  - 100
VL  - 97
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap97-1-7/
DO  - 10.4064/ap97-1-7
LA  - en
ID  - 10_4064_ap97_1_7
ER  - 
%0 Journal Article
%A Xiao-Guang Qi
%A Lian-Zhong Yang
%T Uniqueness of entire functions and fixed points
%J Annales Polonici Mathematici
%D 2010
%P 87-100
%V 97
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap97-1-7/
%R 10.4064/ap97-1-7
%G en
%F 10_4064_ap97_1_7
Xiao-Guang Qi; Lian-Zhong Yang. Uniqueness of entire functions and fixed points. Annales Polonici Mathematici, Tome 97 (2010) no. 1, pp. 87-100. doi : 10.4064/ap97-1-7. http://geodesic.mathdoc.fr/articles/10.4064/ap97-1-7/

Cité par Sources :