Let $f$ and $g$ be entire functions, $n,$$k$ and $m$ be positive integers, and $\lambda $, $\mu $ be complex numbers with $|\lambda |+|\mu | \not =0$. We prove that $(f^{n}(z)(\lambda f^{m}(z)+\mu ))^{(k)}$ must have infinitely many fixed points if $n \geq k +2$; furthermore, if $ (f^{n}(z)(\lambda f^{m}(z)+\mu ))^{(k)}$ and $(g^{n}(z)(\lambda g^{m}(z)+\mu ))^{(k)}$ have the same fixed points with the same multiplicities, then either $f\equiv cg$ for a constant $c$, or $f$ and $g$ assume certain forms provided that $n>2k+m^{*}+4,$ where $m^*$ is an integer that depends only on $\lambda .$
Keywords:
entire functions positive integers lambda complex numbers lambda prove lambda have infinitely many fixed points geq furthermore lambda lambda have fixed points multiplicities either equiv constant assume certain forms provided * where * integer depends only lambda
@article{10_4064_ap97_1_7,
author = {Xiao-Guang Qi and Lian-Zhong Yang},
title = {Uniqueness of entire functions and fixed points},
journal = {Annales Polonici Mathematici},
pages = {87--100},
year = {2010},
volume = {97},
number = {1},
doi = {10.4064/ap97-1-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap97-1-7/}
}
TY - JOUR
AU - Xiao-Guang Qi
AU - Lian-Zhong Yang
TI - Uniqueness of entire functions and fixed points
JO - Annales Polonici Mathematici
PY - 2010
SP - 87
EP - 100
VL - 97
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/ap97-1-7/
DO - 10.4064/ap97-1-7
LA - en
ID - 10_4064_ap97_1_7
ER -
%0 Journal Article
%A Xiao-Guang Qi
%A Lian-Zhong Yang
%T Uniqueness of entire functions and fixed points
%J Annales Polonici Mathematici
%D 2010
%P 87-100
%V 97
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/ap97-1-7/
%R 10.4064/ap97-1-7
%G en
%F 10_4064_ap97_1_7
Xiao-Guang Qi; Lian-Zhong Yang. Uniqueness of entire functions and fixed points. Annales Polonici Mathematici, Tome 97 (2010) no. 1, pp. 87-100. doi: 10.4064/ap97-1-7