On nonsingular polynomial maps of $\mathbb R^2$
Annales Polonici Mathematici, Tome 88 (2006) no. 3, pp. 193-204
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We consider nonsingular polynomial maps $F = (P,Q):\mathbb R^2 \to \mathbb R^2$
under the following regularity condition at infinity $(J_\infty)$: There
does not exist a sequence $\{(p_k,q_k)\}\subset \mathbb C^2$ of complex
singular points of $F$ such that the imaginary parts $(\Im
(p_k),\Im(q_k))$ tend to $(0,0)$, the real parts $(\Re(p_k),
\Re(q_k))$ tend to $\infty$ and $F(\Re(p_k),\Re(q_k)) )\rightarrow
a\in \mathbb R^2$. It is shown that $F$ is a global diffeomorphism of
$\mathbb R^2$ if it satisfies Condition $(J_\infty)$ and if, in addition, the
restriction of $F$ to every real level set $P^{-1}(c) $ is proper for
values of $\vert c\vert$ large enough.
Keywords:
consider nonsingular polynomial maps mathbb mathbb under following regularity condition infinity infty there does exist sequence k subset mathbb complex singular points imaginary parts tend real parts tend infty rightarrow mathbb shown global diffeomorphism mathbb satisfies condition infty addition restriction every real level set proper values vert vert large enough
Affiliations des auteurs :
Nguyen Van Chau 1 ; Carlos Gutierrez 2
@article{10_4064_ap88_3_1,
author = {Nguyen Van Chau and Carlos Gutierrez},
title = {On nonsingular polynomial maps of $\mathbb R^2$},
journal = {Annales Polonici Mathematici},
pages = {193--204},
year = {2006},
volume = {88},
number = {3},
doi = {10.4064/ap88-3-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap88-3-1/}
}
Nguyen Van Chau; Carlos Gutierrez. On nonsingular polynomial maps of $\mathbb R^2$. Annales Polonici Mathematici, Tome 88 (2006) no. 3, pp. 193-204. doi: 10.4064/ap88-3-1
Cité par Sources :