Non-isotropic Hausdorff capacity of exceptional sets for pluri-Green potentials in the unit ball of ${\Bbb C}^n$
Annales Polonici Mathematici, Tome 88 (2006) no. 1, pp. 59-82.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study questions related to exceptional sets of pluri-Green potentials $V_{\mu }$ in the unit ball $B$ of ${\mathbb C}^n$ in terms of non-isotropic Hausdorff capacity. For suitable measures $\mu $ on the ball $B$, the pluri-Green potentials $V_{\mu }$ are defined by $$ V_{\mu }(z)=\int _B\mathop {\rm log}\nolimits {1\over |\phi _z(w)|}\, d\mu (w), $$ where for a fixed $z\in B$, $\phi _z$ denotes the holomorphic automorphism of $B$ satisfying $\phi _z(0)=z$, $\phi _z(z)=0$ and $(\phi _z\circ \phi _z)(w)=w$ for every $w \in B$. If $d\mu (w) =f(w)d\lambda (w)$, where $f$ is a non-negative measurable function of $B$, and $\lambda $ is the measure on $B$, invariant under all holomorphic automorphisms of $B$, then $V_{\mu }$ is denoted by $V_f$. The main result of this paper is as follows: Let $f$ be a non-negative measurable function on $B$ satisfying $$ \int _B(1-|z|^2)f^p(z)\, d\lambda (z)\infty $$ for some $p$ with $1 p {n/(n-1)}$ and some $\alpha $ with $0 \alpha n+p-np$. Then for each $\tau $ with $1\le \tau \le {n/\alpha }$, there exists a set $E_{\tau }\subseteq S$ with $H_{\alpha \tau }(E_{\tau })=0$ such that $$ \mathop {\rm lim}_{\textstyle { z\to \zeta \atop z\in {\mathcal T}_{\tau ,c}(\zeta )}} V_f(z)=0 $$ for all points $\zeta \in S\setminus E_{\tau }$. In the above, for $\alpha > 0$, $H_{\alpha }$ denotes the non-isotropic Hausdorff capacity on $S$, and for $\zeta \in S =\partial B$, $\tau \ge 1$, and $c> 0$, ${\mathcal T}_{\tau ,c}(\zeta )$ are the regions defined by $$ {\mathcal T}_{\tau ,c}(\zeta )= \{ z\in B:|1-\langle z,\zeta \rangle |^{\tau } c(1-{|z|}^2) \} . $$
DOI : 10.4064/ap88-1-5
Keywords: study questions related exceptional sets pluri green potentials unit ball mathbb terms non isotropic hausdorff capacity suitable measures ball pluri green potentials defined int mathop log nolimits phi where fixed phi denotes holomorphic automorphism satisfying phi phi phi circ phi every lambda where non negative measurable function lambda measure invariant under holomorphic automorphisms denoted main result paper follows non negative measurable function satisfying int lambda infty n alpha alpha p np each tau tau alpha there exists set tau subseteq alpha tau tau mathop lim textstyle zeta atop mathcal tau zeta points zeta setminus tau above alpha alpha denotes non isotropic hausdorff capacity zeta partial tau mathcal tau zeta regions defined mathcal tau zeta langle zeta rangle tau

Kuzman Adzievski 1

1 Department of Mathematics and Computer Science South Carolina State University Orangeburg, SC 29117, U.S.A.
@article{10_4064_ap88_1_5,
     author = {Kuzman Adzievski},
     title = {Non-isotropic {Hausdorff} capacity of exceptional sets
 for {pluri-Green} potentials in the unit ball of ${\Bbb C}^n$},
     journal = {Annales Polonici Mathematici},
     pages = {59--82},
     publisher = {mathdoc},
     volume = {88},
     number = {1},
     year = {2006},
     doi = {10.4064/ap88-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap88-1-5/}
}
TY  - JOUR
AU  - Kuzman Adzievski
TI  - Non-isotropic Hausdorff capacity of exceptional sets
 for pluri-Green potentials in the unit ball of ${\Bbb C}^n$
JO  - Annales Polonici Mathematici
PY  - 2006
SP  - 59
EP  - 82
VL  - 88
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap88-1-5/
DO  - 10.4064/ap88-1-5
LA  - en
ID  - 10_4064_ap88_1_5
ER  - 
%0 Journal Article
%A Kuzman Adzievski
%T Non-isotropic Hausdorff capacity of exceptional sets
 for pluri-Green potentials in the unit ball of ${\Bbb C}^n$
%J Annales Polonici Mathematici
%D 2006
%P 59-82
%V 88
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap88-1-5/
%R 10.4064/ap88-1-5
%G en
%F 10_4064_ap88_1_5
Kuzman Adzievski. Non-isotropic Hausdorff capacity of exceptional sets
 for pluri-Green potentials in the unit ball of ${\Bbb C}^n$. Annales Polonici Mathematici, Tome 88 (2006) no. 1, pp. 59-82. doi : 10.4064/ap88-1-5. http://geodesic.mathdoc.fr/articles/10.4064/ap88-1-5/

Cité par Sources :