Convolution theorems for starlike and
convex functions in the unit disc
Annales Polonici Mathematici, Tome 84 (2004) no. 1, pp. 27-39
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let ${\cal A}$ denote the space of all analytic functions in the unit disc
${\mit\Delta} $ with the normalization $f(0)=f'(0)-1=0$. For $\beta
1$, let
$${\cal P}_{\beta}^0=\{f\in {\cal A}:
\mathop{\rm Re}\nolimits f'(z)> \beta, \,z\in{\mit\Delta}\}.$$
For $\lambda > 0$, suppose that $\cal F$ denotes any one of the following
classes of functions:
$$\eqalign{M_{1,\lambda}^{(1)}=\{f\in {\cal A}:\mathop{\rm Re}\nolimits\{
z(zf'(z))' '\}> -\lambda , \, z\in {\mit\Delta} \},\cr
M_{1,\lambda}^{(2)}=\{f\in {\cal A}:\mathop{\rm Re}\nolimits\{
z(z^2f' '(z))' '\}> -\lambda , \, z\in {\mit\Delta}\},\cr
M_{1,\lambda}^{(3)}=\{f\in {\cal A}:
\mathop{\rm Re}\nolimits \{\textstyle\frac{1}{2}(z(z^2f'(z))' ')'-1
\}> -\lambda, \,z \in {\mit\Delta} \}.\cr}$$
The main purpose of this paper is to find conditions on $\lambda$ and
$\gamma$ so that each $f \in {\cal F}$ is in ${\cal S}_\gamma $ or
${\cal K}_\gamma $, $\gamma \in [0,1/2]$. Here ${\cal S}_\gamma $ and ${\cal
K}_\gamma $ respectively denote the class of all starlike functions of order
$\gamma$ and the class of all convex functions of order $\gamma$.
As a consequence, we obtain a number of convolution theorems, namely
the inclusions
$M_{1,\alpha}*{\cal G} \subset {\cal S}_{\gamma }$
and
$M_{1,\alpha}*{\cal G} \subset {\cal K}_{\gamma }$,
where $\cal G$ is either ${\cal P}_{\beta}^0$ or $M_{1,\beta}$. Here
$M_{1,\lambda}$ denotes the class of all functions $f$ in ${\cal A}$ such that
$\mathop{\rm Re}\nolimits(zf' '(z))> -\lambda$ for $z\in{\mit\Delta}$.
Keywords:
cal denote space analytic functions unit disc mit delta normalization beta cal beta cal mathop nolimits beta mit delta lambda suppose cal denotes following classes functions eqalign lambda cal mathop nolimits lambda mit delta lambda cal mathop nolimits lambda mit delta lambda cal mathop nolimits textstyle frac lambda mit delta main purpose paper conditions lambda gamma each cal cal gamma cal gamma gamma here cal gamma cal gamma respectively denote class starlike functions order gamma class convex functions order gamma consequence obtain number convolution theorems namely inclusions alpha * cal subset cal gamma alpha * cal subset cal gamma where cal either cal beta beta here lambda denotes class functions cal mathop nolimits lambda mit delta
Affiliations des auteurs :
M. Anbudurai 1 ; R. Parvatham 2 ; S. Ponnusamy 3 ; V. Singh 4
@article{10_4064_ap84_1_2,
author = {M. Anbudurai and R. Parvatham and S. Ponnusamy and V. Singh},
title = {Convolution theorems for starlike and
convex functions in the unit disc},
journal = {Annales Polonici Mathematici},
pages = {27--39},
publisher = {mathdoc},
volume = {84},
number = {1},
year = {2004},
doi = {10.4064/ap84-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap84-1-2/}
}
TY - JOUR AU - M. Anbudurai AU - R. Parvatham AU - S. Ponnusamy AU - V. Singh TI - Convolution theorems for starlike and convex functions in the unit disc JO - Annales Polonici Mathematici PY - 2004 SP - 27 EP - 39 VL - 84 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap84-1-2/ DO - 10.4064/ap84-1-2 LA - en ID - 10_4064_ap84_1_2 ER -
%0 Journal Article %A M. Anbudurai %A R. Parvatham %A S. Ponnusamy %A V. Singh %T Convolution theorems for starlike and convex functions in the unit disc %J Annales Polonici Mathematici %D 2004 %P 27-39 %V 84 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap84-1-2/ %R 10.4064/ap84-1-2 %G en %F 10_4064_ap84_1_2
M. Anbudurai; R. Parvatham; S. Ponnusamy; V. Singh. Convolution theorems for starlike and convex functions in the unit disc. Annales Polonici Mathematici, Tome 84 (2004) no. 1, pp. 27-39. doi: 10.4064/ap84-1-2
Cité par Sources :