Global smooth and topological rigidity of hyperbolic lattice actions
Annals of mathematics, Tome 186 (2017) no. 3, pp. 913-972.

Voir la notice de l'article provenant de la source Annals of Mathematics website

In this article we prove global rigidity results for hyperbolic actions of higher-rank lattices.
Suppose $\Gamma$ is a lattice in a semisimple Lie group, all of whose factors have rank $2$ or higher. Let $\alpha$ be a smooth $\Gamma$-action on a compact nilmanifold $M$ that lifts to an action on the universal cover. If the linear data $\rho$ of $\alpha$ contains a hyperbolic element, then there is a continuous semiconjugacy intertwining the actions of $\alpha$ and $\rho$ on a finite-index subgroup of $\Gamma$. If $\alpha$ is a $C^\infty$ action and contains an Anosov element, then the semiconjugacy is a $C^\infty$ conjugacy.
As a corollary, we obtain $C^\infty$ global rigidity for Anosov actions by cocompact lattices in semisimple Lie groups with all factors rank $2$ or higher. We also obtain global rigidity of Anosov actions of $\mathrm{SL}(n,\mathbb{Z})$ on $\mathbb{T}^n$ for $ n\geq 5$ and probability-preserving Anosov actions of arbitrary higher-rank lattices on nilmanifolds.
DOI : 10.4007/annals.2017.186.3.3

Aaron Brown 1 ; Federico Rodriguez Hertz 2 ; Zhiren Wang 2

1 University of Chicago, Chicago, IL
2 Pennsylvania State University, University Park, PA
@article{10_4007_annals_2017_186_3_3,
     author = {Aaron Brown and Federico Rodriguez Hertz and Zhiren Wang},
     title = {Global smooth and topological rigidity of hyperbolic lattice actions},
     journal = {Annals of mathematics},
     pages = {913--972},
     publisher = {mathdoc},
     volume = {186},
     number = {3},
     year = {2017},
     doi = {10.4007/annals.2017.186.3.3},
     mrnumber = {3702679},
     zbl = {06804006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.186.3.3/}
}
TY  - JOUR
AU  - Aaron Brown
AU  - Federico Rodriguez Hertz
AU  - Zhiren Wang
TI  - Global smooth and topological rigidity of hyperbolic lattice actions
JO  - Annals of mathematics
PY  - 2017
SP  - 913
EP  - 972
VL  - 186
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.186.3.3/
DO  - 10.4007/annals.2017.186.3.3
LA  - en
ID  - 10_4007_annals_2017_186_3_3
ER  - 
%0 Journal Article
%A Aaron Brown
%A Federico Rodriguez Hertz
%A Zhiren Wang
%T Global smooth and topological rigidity of hyperbolic lattice actions
%J Annals of mathematics
%D 2017
%P 913-972
%V 186
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.186.3.3/
%R 10.4007/annals.2017.186.3.3
%G en
%F 10_4007_annals_2017_186_3_3
Aaron Brown; Federico Rodriguez Hertz; Zhiren Wang. Global smooth and topological rigidity of hyperbolic lattice actions. Annals of mathematics, Tome 186 (2017) no. 3, pp. 913-972. doi : 10.4007/annals.2017.186.3.3. http://geodesic.mathdoc.fr/articles/10.4007/annals.2017.186.3.3/

Cité par Sources :