Involutes of polygons of constant width in Minkowski planes
Ars Mathematica Contemporanea, Tome 11 (2016) no. 1, pp. 107-125.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

Consider a convex polygon P in the plane, and denote by U a homothetical copy of the vector sum of P and -P. Then the polygon U, as unit ball, induces a norm such that, with respect to this norm, P has constant Minkowskian width. We define notions like Minkowskian curvature, evolutes and involutes for polygons of constant U-width, and we prove that many properties of the smooth case, which is already completely studied, are preserved. The iteration of involutes generates a pair of sequences of polygons of constant width with respect to the Minkowski norm and its dual norm, respectively. We prove that these sequences are converging to symmetric polygons with the same center, which can be regarded as a central point of the polygon P.
DOI : 10.26493/1855-3974.887.ae1
Keywords: Area evolute, Barbier's theorem, center symmetry set, curvature, curves of constant width, discrete differential geometry, evolutes, Minkowski geometry, normed plane, equidistants, involutes, support function, width function
@article{10_26493_1855_3974_887_ae1,
     author = {Marcos Craizer and Horst Martini},
     title = {Involutes of polygons of constant width in {Minkowski} planes},
     journal = {Ars Mathematica Contemporanea},
     pages = {107--125},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2016},
     doi = {10.26493/1855-3974.887.ae1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.887.ae1/}
}
TY  - JOUR
AU  - Marcos Craizer
AU  - Horst Martini
TI  - Involutes of polygons of constant width in Minkowski planes
JO  - Ars Mathematica Contemporanea
PY  - 2016
SP  - 107
EP  - 125
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.887.ae1/
DO  - 10.26493/1855-3974.887.ae1
LA  - en
ID  - 10_26493_1855_3974_887_ae1
ER  - 
%0 Journal Article
%A Marcos Craizer
%A Horst Martini
%T Involutes of polygons of constant width in Minkowski planes
%J Ars Mathematica Contemporanea
%D 2016
%P 107-125
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.887.ae1/
%R 10.26493/1855-3974.887.ae1
%G en
%F 10_26493_1855_3974_887_ae1
Marcos Craizer; Horst Martini. Involutes of polygons of constant width in Minkowski planes. Ars Mathematica Contemporanea, Tome 11 (2016) no. 1, pp. 107-125. doi : 10.26493/1855-3974.887.ae1. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.887.ae1/

Cité par Sources :