The 2A-Majorana representations of the Harada-Norton group
Ars Mathematica Contemporanea, Tome 11 (2016) no. 1, pp. 175-187.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

We show that all 2A-Majorana representations of the Harada-Norton group F5 have the same shape. If R is such a representation, we determine, using the theory of association schemes, the dimension and the irreducible constituents of the linear span U of the Majorana axes. Finally, we prove that, if R is based on the (unique) embedding of F5 in the Monster, U is closed under the algebra product.
DOI : 10.26493/1855-3974.859.0c3
Keywords: Majorana representations, association schemes, Monster algebra, Harada-Norton group
@article{10_26493_1855_3974_859_0c3,
     author = {Clara Franchi and Alexander A. Ivanov and Mario Mainardis},
     title = {The {2A-Majorana} representations of the {Harada-Norton} group},
     journal = {Ars Mathematica Contemporanea},
     pages = {175--187},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2016},
     doi = {10.26493/1855-3974.859.0c3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.859.0c3/}
}
TY  - JOUR
AU  - Clara Franchi
AU  - Alexander A. Ivanov
AU  - Mario Mainardis
TI  - The 2A-Majorana representations of the Harada-Norton group
JO  - Ars Mathematica Contemporanea
PY  - 2016
SP  - 175
EP  - 187
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.859.0c3/
DO  - 10.26493/1855-3974.859.0c3
LA  - en
ID  - 10_26493_1855_3974_859_0c3
ER  - 
%0 Journal Article
%A Clara Franchi
%A Alexander A. Ivanov
%A Mario Mainardis
%T The 2A-Majorana representations of the Harada-Norton group
%J Ars Mathematica Contemporanea
%D 2016
%P 175-187
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.859.0c3/
%R 10.26493/1855-3974.859.0c3
%G en
%F 10_26493_1855_3974_859_0c3
Clara Franchi; Alexander A. Ivanov; Mario Mainardis. The 2A-Majorana representations of the Harada-Norton group. Ars Mathematica Contemporanea, Tome 11 (2016) no. 1, pp. 175-187. doi : 10.26493/1855-3974.859.0c3. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.859.0c3/

Cité par Sources :