Finite two-distance-transitive graphs of valency 6
Ars Mathematica Contemporanea, Tome 11 (2016) no. 1, pp. 49-58.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

A non-complete graph Gamma is said to be (G,2)-distance-transitive if, for i = 1,2 and for any two vertex pairs (u_1,v_1) and (u_2,v_2) with d_Gamma(u_1,v_1) = d_Gamma(u_2,v_2) = i, there exists g in G such that (u_1,v_1)^g=(u_2,v_2). This paper classifies the family of (G,2)-distance-transitive graphs of valency 6 which are not (G,2)-arc-transitive.
DOI : 10.26493/1855-3974.781.d31
Keywords: 2-Distance-transitive graph, 2-arc-transitive graph, permutation group.
@article{10_26493_1855_3974_781_d31,
     author = {Wei Jin and Li Tan},
     title = {Finite two-distance-transitive graphs of valency 6},
     journal = {Ars Mathematica Contemporanea},
     pages = {49--58},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2016},
     doi = {10.26493/1855-3974.781.d31},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.781.d31/}
}
TY  - JOUR
AU  - Wei Jin
AU  - Li Tan
TI  - Finite two-distance-transitive graphs of valency 6
JO  - Ars Mathematica Contemporanea
PY  - 2016
SP  - 49
EP  - 58
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.781.d31/
DO  - 10.26493/1855-3974.781.d31
LA  - en
ID  - 10_26493_1855_3974_781_d31
ER  - 
%0 Journal Article
%A Wei Jin
%A Li Tan
%T Finite two-distance-transitive graphs of valency 6
%J Ars Mathematica Contemporanea
%D 2016
%P 49-58
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.781.d31/
%R 10.26493/1855-3974.781.d31
%G en
%F 10_26493_1855_3974_781_d31
Wei Jin; Li Tan. Finite two-distance-transitive graphs of valency 6. Ars Mathematica Contemporanea, Tome 11 (2016) no. 1, pp. 49-58. doi : 10.26493/1855-3974.781.d31. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.781.d31/

Cité par Sources :