Z_3-connectivity of K_{1,3}-free graphs without induced cycle of length at least 5
Ars Mathematica Contemporanea, Tome 11 (2016) no. 1, pp. 35-47.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

Jaeger et al. conjectured that every 5-edge-connected graph is Z_3-connected.  In this paper, we prove that every 4-edge-connected K_{1, 3}-free graph without any induced cycle of length at least 5 is Z_3-connected, which partially generalizes the earlier results of Lai [Graphs and Combin. 16 (2000) 165-176] and Fukunaga [Graphs and Combin. 27 (2011) 647-659].
DOI : 10.26493/1855-3974.733.105
Keywords: Z_3-connectivity, K_{1, 3}-free, nowhere-zero 3-flow
@article{10_26493_1855_3974_733_105,
     author = {Xiangwen Li and Jianqing Ma},
     title = {Z_3-connectivity of {K_{1,3}-free} graphs without induced cycle of length at least 5},
     journal = {Ars Mathematica Contemporanea},
     pages = {35--47},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2016},
     doi = {10.26493/1855-3974.733.105},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.733.105/}
}
TY  - JOUR
AU  - Xiangwen Li
AU  - Jianqing Ma
TI  - Z_3-connectivity of K_{1,3}-free graphs without induced cycle of length at least 5
JO  - Ars Mathematica Contemporanea
PY  - 2016
SP  - 35
EP  - 47
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.733.105/
DO  - 10.26493/1855-3974.733.105
LA  - en
ID  - 10_26493_1855_3974_733_105
ER  - 
%0 Journal Article
%A Xiangwen Li
%A Jianqing Ma
%T Z_3-connectivity of K_{1,3}-free graphs without induced cycle of length at least 5
%J Ars Mathematica Contemporanea
%D 2016
%P 35-47
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.733.105/
%R 10.26493/1855-3974.733.105
%G en
%F 10_26493_1855_3974_733_105
Xiangwen Li; Jianqing Ma. Z_3-connectivity of K_{1,3}-free graphs without induced cycle of length at least 5. Ars Mathematica Contemporanea, Tome 11 (2016) no. 1, pp. 35-47. doi : 10.26493/1855-3974.733.105. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.733.105/

Cité par Sources :