Nonlinear maps preserving the elementary symmetric functions
Ars Mathematica Contemporanea, Tome 21 (2021) no. 1, article no. 09, 8 p.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

Let ℳn be the algebra of all n × n complex matrices, and for a natural number 2 ≤ k ≤ n denote by Ek(x) the kth elementary symmetric function on the eigenvalues of x ∈ ℳn. For two maps φ, ψ: ℳn → ℳn, one of them being surjective, we prove that if Ek(λx + y) = Ek(λφ(x) + ψ(y)) for each λ ∈ C and x, y ∈ ℳn, then φ = ψ on ℳn, the common value being a linear map from ℳn into itself. In particular, for 3 ≤ k ≤ n the general form of φ and ψ can be computed explicitly.
DOI : 10.26493/1855-3974.2488.f5c
Keywords: Elementary symmetric function, nonlinear, preserver
@article{10_26493_1855_3974_2488_f5c,
     author = {Constantin Costara},
     title = {Nonlinear maps preserving the elementary symmetric functions},
     journal = {Ars Mathematica Contemporanea},
     eid = {09},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2021},
     doi = {10.26493/1855-3974.2488.f5c},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2488.f5c/}
}
TY  - JOUR
AU  - Constantin Costara
TI  - Nonlinear maps preserving the elementary symmetric functions
JO  - Ars Mathematica Contemporanea
PY  - 2021
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2488.f5c/
DO  - 10.26493/1855-3974.2488.f5c
LA  - en
ID  - 10_26493_1855_3974_2488_f5c
ER  - 
%0 Journal Article
%A Constantin Costara
%T Nonlinear maps preserving the elementary symmetric functions
%J Ars Mathematica Contemporanea
%D 2021
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2488.f5c/
%R 10.26493/1855-3974.2488.f5c
%G en
%F 10_26493_1855_3974_2488_f5c
Constantin Costara. Nonlinear maps preserving the elementary symmetric functions. Ars Mathematica Contemporanea, Tome 21 (2021) no. 1, article  no. 09, 8 p. doi : 10.26493/1855-3974.2488.f5c. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2488.f5c/

Cité par Sources :