A characterization of exceptional pseudocyclic association schemes by multidimensional intersection numbers
Ars Mathematica Contemporanea, Tome 21 (2021) no. 1, article no. 10, 18 p.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

Recent classification of 3/2-transitive permutation groups leaves us with three infinite families of groups which are neither 2-transitive, nor Frobenius, nor one-dimensional affine. The groups of the first two families correspond to special actions of PSL(2, q) and PΓL(2, q), whereas those of the third family are the affine solvable subgroups of AGL(2, q) found by D. Passman in 1967. The association schemes of the groups in each of these families are known to be pseudocyclic. It is proved that apart from three particular cases, each of these exceptional pseudocyclic schemes is characterized up to isomorphism by the tensor of its 3-dimensional intersection numbers.
DOI : 10.26493/1855-3974.2405.b43
Keywords: Association schemes, groups, coherent configurations
@article{10_26493_1855_3974_2405_b43,
     author = {Gang Chen and Jiawei He and Ilia Ponomarenko and Andrey Vasil'ev},
     title = {A characterization of exceptional pseudocyclic association schemes by multidimensional intersection numbers},
     journal = {Ars Mathematica Contemporanea},
     eid = {10},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2021},
     doi = {10.26493/1855-3974.2405.b43},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2405.b43/}
}
TY  - JOUR
AU  - Gang Chen
AU  - Jiawei He
AU  - Ilia Ponomarenko
AU  - Andrey Vasil'ev
TI  - A characterization of exceptional pseudocyclic association schemes by multidimensional intersection numbers
JO  - Ars Mathematica Contemporanea
PY  - 2021
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2405.b43/
DO  - 10.26493/1855-3974.2405.b43
LA  - en
ID  - 10_26493_1855_3974_2405_b43
ER  - 
%0 Journal Article
%A Gang Chen
%A Jiawei He
%A Ilia Ponomarenko
%A Andrey Vasil'ev
%T A characterization of exceptional pseudocyclic association schemes by multidimensional intersection numbers
%J Ars Mathematica Contemporanea
%D 2021
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2405.b43/
%R 10.26493/1855-3974.2405.b43
%G en
%F 10_26493_1855_3974_2405_b43
Gang Chen; Jiawei He; Ilia Ponomarenko; Andrey Vasil'ev. A characterization of exceptional pseudocyclic association schemes by multidimensional intersection numbers. Ars Mathematica Contemporanea, Tome 21 (2021) no. 1, article  no. 10, 18 p. doi : 10.26493/1855-3974.2405.b43. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2405.b43/

Cité par Sources :