Hamilton paths in Cayley graphs on generalized dihedral groups
Ars Mathematica Contemporanea, Tome 3 (2010) no. 1, pp. 29-47.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

We investigate the existence of Hamilton paths in connected Cayley graphs on generalized dihedral groups. In particular, we show that a connected Cayley graph of valency at least three on a generalized dihedral group, whose order is divisible by four, is Hamilton-connected, unless it is bipartite, in which case it is Hamilton-laceable.
DOI : 10.26493/1855-3974.101.a37
Keywords: amilton-connected, Hamilton-laceable, Cayley graphs, generalized dihedral group, honeycomb toroidal graph
@article{10_26493_1855_3974_101_a37,
     author = {Brian Alspach and C. C. Chen and Matthew Dean},
     title = {Hamilton paths in {Cayley} graphs on generalized dihedral groups},
     journal = {Ars Mathematica Contemporanea},
     pages = {29--47},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2010},
     doi = {10.26493/1855-3974.101.a37},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.101.a37/}
}
TY  - JOUR
AU  - Brian Alspach
AU  - C. C. Chen
AU  - Matthew Dean
TI  - Hamilton paths in Cayley graphs on generalized dihedral groups
JO  - Ars Mathematica Contemporanea
PY  - 2010
SP  - 29
EP  - 47
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.101.a37/
DO  - 10.26493/1855-3974.101.a37
LA  - en
ID  - 10_26493_1855_3974_101_a37
ER  - 
%0 Journal Article
%A Brian Alspach
%A C. C. Chen
%A Matthew Dean
%T Hamilton paths in Cayley graphs on generalized dihedral groups
%J Ars Mathematica Contemporanea
%D 2010
%P 29-47
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.101.a37/
%R 10.26493/1855-3974.101.a37
%G en
%F 10_26493_1855_3974_101_a37
Brian Alspach; C. C. Chen; Matthew Dean. Hamilton paths in Cayley graphs on generalized dihedral groups. Ars Mathematica Contemporanea, Tome 3 (2010) no. 1, pp. 29-47. doi : 10.26493/1855-3974.101.a37. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.101.a37/

Cité par Sources :