Diameter-invariant graphs
Mathematica Bohemica, Tome 130 (2005) no. 4, pp. 355-370.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The diameter of a graph $G$ is the maximal distance between two vertices of $G$. A graph $G$ is said to be diameter-edge-invariant, if $d(G-e)=d(G)$ for all its edges, diameter-vertex-invariant, if $d(G-v)=d(G)$ for all its vertices and diameter-adding-invariant if $d(G+e)=d(e)$ for all edges of the complement of the edge set of $G$. This paper describes some properties of such graphs and gives several existence results and bounds for parameters of diameter-invariant graphs.
DOI : 10.21136/MB.2005.134211
Classification : 05C12, 05C35
Keywords: extremal graphs; diameter of graph; distance
@article{10_21136_MB_2005_134211,
     author = {Vacek, Ondrej},
     title = {Diameter-invariant graphs},
     journal = {Mathematica Bohemica},
     pages = {355--370},
     publisher = {mathdoc},
     volume = {130},
     number = {4},
     year = {2005},
     doi = {10.21136/MB.2005.134211},
     mrnumber = {2182382},
     zbl = {1112.05033},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2005.134211/}
}
TY  - JOUR
AU  - Vacek, Ondrej
TI  - Diameter-invariant graphs
JO  - Mathematica Bohemica
PY  - 2005
SP  - 355
EP  - 370
VL  - 130
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2005.134211/
DO  - 10.21136/MB.2005.134211
LA  - en
ID  - 10_21136_MB_2005_134211
ER  - 
%0 Journal Article
%A Vacek, Ondrej
%T Diameter-invariant graphs
%J Mathematica Bohemica
%D 2005
%P 355-370
%V 130
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2005.134211/
%R 10.21136/MB.2005.134211
%G en
%F 10_21136_MB_2005_134211
Vacek, Ondrej. Diameter-invariant graphs. Mathematica Bohemica, Tome 130 (2005) no. 4, pp. 355-370. doi : 10.21136/MB.2005.134211. http://geodesic.mathdoc.fr/articles/10.21136/MB.2005.134211/

Cité par Sources :