Monotone iterative technique and connectedness of the set of solutions
Mathematica Bohemica, Tome 125 (2000) no. 3, pp. 323-329.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The paper deals with the properties of a monotone operator defined on a subset of an ordered Banach space. The structure of the set of fixed points between the minimal and maximal ones is described.
DOI : 10.21136/MB.2000.126133
Classification : 34C25, 46B40, 47H07, 47H10
Keywords: order preserving operator; ordered Banach space; structure of the set of fixed points; fixed points between the minimal and maximal ones; connectedness of the set of solutions
@article{10_21136_MB_2000_126133,
     author = {Rudolf, Boris},
     title = {Monotone iterative technique and connectedness of the set of solutions},
     journal = {Mathematica Bohemica},
     pages = {323--329},
     publisher = {mathdoc},
     volume = {125},
     number = {3},
     year = {2000},
     doi = {10.21136/MB.2000.126133},
     mrnumber = {1790123},
     zbl = {0971.47033},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2000.126133/}
}
TY  - JOUR
AU  - Rudolf, Boris
TI  - Monotone iterative technique and connectedness of the set of solutions
JO  - Mathematica Bohemica
PY  - 2000
SP  - 323
EP  - 329
VL  - 125
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2000.126133/
DO  - 10.21136/MB.2000.126133
LA  - en
ID  - 10_21136_MB_2000_126133
ER  - 
%0 Journal Article
%A Rudolf, Boris
%T Monotone iterative technique and connectedness of the set of solutions
%J Mathematica Bohemica
%D 2000
%P 323-329
%V 125
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2000.126133/
%R 10.21136/MB.2000.126133
%G en
%F 10_21136_MB_2000_126133
Rudolf, Boris. Monotone iterative technique and connectedness of the set of solutions. Mathematica Bohemica, Tome 125 (2000) no. 3, pp. 323-329. doi : 10.21136/MB.2000.126133. http://geodesic.mathdoc.fr/articles/10.21136/MB.2000.126133/

Cité par Sources :