Direct product decompositions of infinitely distributive lattices
Mathematica Bohemica, Tome 125 (2000) no. 3, pp. 341-354.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $\alpha$ be an infinite cardinal. Let $\Cal T_\alpha$ be the class of all lattices which are conditionally $\alpha$-complete and infinitely distributive. We denote by $\Cal{T}_\sigma'$ the class of all lattices $X$ such that $X$ is infinitely distributive, $\sigma$-complete and has the least element. In this paper we deal with direct factors of lattices belonging to $\Cal T_\alpha$. As an application, we prove a result of Cantor-Bernstein type for lattices belonging to the class $\Cal T_\sigma'$.
DOI : 10.21136/MB.2000.126128
Classification : 06B23, 06B35, 06D10
Keywords: direct product decomposition; infinite distributivity; conditional $\alpha$-completeness
@article{10_21136_MB_2000_126128,
     author = {Jakub{\'\i}k, J\'an},
     title = {Direct product decompositions of infinitely distributive lattices},
     journal = {Mathematica Bohemica},
     pages = {341--354},
     publisher = {mathdoc},
     volume = {125},
     number = {3},
     year = {2000},
     doi = {10.21136/MB.2000.126128},
     mrnumber = {1790125},
     zbl = {0967.06004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2000.126128/}
}
TY  - JOUR
AU  - Jakubík, Ján
TI  - Direct product decompositions of infinitely distributive lattices
JO  - Mathematica Bohemica
PY  - 2000
SP  - 341
EP  - 354
VL  - 125
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2000.126128/
DO  - 10.21136/MB.2000.126128
LA  - en
ID  - 10_21136_MB_2000_126128
ER  - 
%0 Journal Article
%A Jakubík, Ján
%T Direct product decompositions of infinitely distributive lattices
%J Mathematica Bohemica
%D 2000
%P 341-354
%V 125
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2000.126128/
%R 10.21136/MB.2000.126128
%G en
%F 10_21136_MB_2000_126128
Jakubík, Ján. Direct product decompositions of infinitely distributive lattices. Mathematica Bohemica, Tome 125 (2000) no. 3, pp. 341-354. doi : 10.21136/MB.2000.126128. http://geodesic.mathdoc.fr/articles/10.21136/MB.2000.126128/

Cité par Sources :