On a problem of colouring the real plane
Mathematica Bohemica, Tome 116 (1991) no. 3, pp. 309-318.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

What is the least number of colours which can be used to colour all points of the real Euclidean plane so that no two points which are unit distance apart have the same colour? This well known problem, open more than 25 years is studied in the paper. Some partial results and open subproblems are presented.
DOI : 10.21136/MB.1991.126170
Classification : 05C15
Keywords: vertex colouring; infinity graph; decomposition of the real plane
@article{10_21136_MB_1991_126170,
     author = {Guldan, Filip},
     title = {On a problem of colouring the real plane},
     journal = {Mathematica Bohemica},
     pages = {309--318},
     publisher = {mathdoc},
     volume = {116},
     number = {3},
     year = {1991},
     doi = {10.21136/MB.1991.126170},
     mrnumber = {1126452},
     zbl = {0758.05052},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1991.126170/}
}
TY  - JOUR
AU  - Guldan, Filip
TI  - On a problem of colouring the real plane
JO  - Mathematica Bohemica
PY  - 1991
SP  - 309
EP  - 318
VL  - 116
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1991.126170/
DO  - 10.21136/MB.1991.126170
LA  - en
ID  - 10_21136_MB_1991_126170
ER  - 
%0 Journal Article
%A Guldan, Filip
%T On a problem of colouring the real plane
%J Mathematica Bohemica
%D 1991
%P 309-318
%V 116
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1991.126170/
%R 10.21136/MB.1991.126170
%G en
%F 10_21136_MB_1991_126170
Guldan, Filip. On a problem of colouring the real plane. Mathematica Bohemica, Tome 116 (1991) no. 3, pp. 309-318. doi : 10.21136/MB.1991.126170. http://geodesic.mathdoc.fr/articles/10.21136/MB.1991.126170/

Cité par Sources :